All publications

In Press
Yano, K., Luo, Z., Huang, J., Xie, Q., Asada, M., Yuan, C., Yang, K, Miwa, M., Ananiadou, S. and Tsujii, J., ELAINE-medLLM: Lightweight English Japanese Chinese Trilingual Large Language Model for Bio-medical Domain, in: Proceedings of the 31st International Conference on Computational Linguistics (COLING 2025), In Press
2024
Yuan, C., Xie, Q., Huang, J. and Ananiadou, S., Back to the Future: Towards Explainable Temporal Reasoning with Large Language Models, in: Proceedings of the ACM on Web Conference 2024 (WWW '24), pages 1963 - 1974, 2024
[URL]
Liu, Z., Liu, B, Thompson, P., Yang, K and Ananiadou, S., ConspEmoLLM: Conspiracy Theory Detection Using an Emotion-Based Large Language Model, in: Proceedings of the 13th International Conference on Prestigious Applications of Intelligent Systems (PAIS-2024), 2024
[DOI]
[URL]
Zhang, X., Xiang, R., Yuan, C., Feng, D., Han, W., Lopez-Lira, A., Liu, X. -Y., Ananiadou, S., Peng, M., Huang, J. and Xie, Q., Dólares or Dollars? Unraveling the Bilingual Prowess of Financial LLMs Between Spanish and English, in: Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD '24), pages 6236-6246, 2024
[DOI]
[URL]
Xie, Q., Huang, J., Li, D., Chen, Z., Xiang, R., Xiao, M., Yu, Y., Somasundaram, V., Yang, K, Yuan, C., Luo, Z., Liu, Z., He, Y., Jiang, Y., Li, H., Feng, D., Liu, X. -Y., Wang, B., Wang, H., Lai, Y., Suchow, J., Lopez-Lira, A., Peng, M. and Ananiadou, S., FinNLP-AgentScen-2024 Shared Task: Financial Challenges in Large Language Models - FinLLMs, in: Proceedings of the Eighth Financial Technology and Natural Language Processing and the 1st Agent AI for Scenario Planning, pages 119- 126, 2024
[URL]
Luo, Z., Liu, L., Ananiadou, S. and Xie, Q., Graph Contrastive Topic Model (2024), in: Expert Systems with Applications, 255:Part C(124631)
[DOI]
[URL]
Wang, Y., Feng, D., Dai, Y., Chen, Z., Huang, J., Ananiadou, S., Xie, Q. and Wang, H., HARMONIC: Harnessing LLMs for Tabular Data Synthesis and Privacy Protection, in: Proceedings of the Thirty-Eighth Annual Conference on Neural Information Processing Systems (NeurIPS), 2024
[URL]
Yu, Z. and Ananiadou, S., How do Large Language Models Learn In-Context? Query and Key Matrices of In-Context Heads are Two Towers for Metric Learning, in: Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing, pages 3281–3292, 2024
[DOI]
[URL]
Yu, Z. and Ananiadou, S., Interpreting Arithmetic Mechanism in Large Language Models through Comparative Neuron Analysis, in: Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing, pages 3293–3306, 2024
[DOI]
[URL]
Yang, K, Liu, Z., Xie, Q., Huang, J., Zhang, T. and Ananiadou, S., MetaAligner: Towards Generalizable Multi-Objective Alignment of Language Models, in: Proceedings of the Thirty-Eighth Annual Conference on Neural Information Processing Systems (NeurIPS), 2024
[URL]
Yu, Z. and Ananiadou, S., Neuron-Level Knowledge Attribution in Large Language Models, in: Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing, pages 3267–3280, 2024
[DOI]
[URL]
Goldsack, T., Luo, Z., Xie, Q., Scarton, C., Shardlow, M., Ananiadou, S. and Lin, C., Overview of the BioLaySumm 2023 Shared Task on Lay Summarization of Biomedical Research Articles, in: Proceedings of the 22nd Workshop on Biomedical Natural Language Processing and BioNLP Shared Tasks, pages 468-477, 2024
[DOI]
[URL]