Alle publicaties voor Yang, K
In Press
ELAINE-medLLM: Lightweight English Japanese Chinese Trilingual Large Language Model for Bio-medical Domain, in: Proceedings of the 31st International Conference on Computational Linguistics (COLING 2025), In Press | , , , , , , , , en ,
2024
ConspEmoLLM: Conspiracy Theory Detection Using an Emotion-Based Large Language Model, in: Proceedings of the 13th International Conference on Prestigious Applications of Intelligent Systems (PAIS-2024), 2024 | , , , en ,
[DOI] [URL] |
EmoLLMs: A Series of Emotional Large Language Models and Annotation Tools for Comprehensive Affective Analysis, in: Proceedings of KDD 2024, pagina's 5487 - 5496, 2024 | , , , , en ,
[URL] |
Emotion detection for misinformation: A review (2024), in: Information Fusion, 107(102300) | , , , , en ,
[DOI] |
FinBen: An Holistic Financial Benchmark for Large Language Models, in: Proceedings of the Thirty-Eighth Annual Conference on Neural Information Processing Systems (NeurIPS), 2024 | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , en ,
[URL] |
FinNLP-AgentScen-2024 Shared Task: Financial Challenges in Large Language Models - FinLLMs, in: Proceedings of the Eighth Financial Technology and Natural Language Processing and the 1st Agent AI for Scenario Planning, pagina's 119- 126, 2024 | , , , , , , , , , , , , , , , , , , , , , , en ,
[URL] |
FMDLlama: Financial Misinformation Detection based on Large Language Models, arXiv, 2024 | , , , , en ,
[URL] |
Large Language Models in Mental Health Care: a Scoping Review, arXiv, 2024 | , , , , , , , en ,
[URL] |
MentaLLaMA: Interpretable Mental Health Analysis on Social Media with Large Language Models, in: Proceedings of WWW 2024, pagina's 4489 - 4500, 2024 | , , , , en ,
[DOI] [URL] |
MetaAligner: Towards Generalizable Multi-Objective Alignment of Language Models, in: Proceedings of the Thirty-Eighth Annual Conference on Neural Information Processing Systems (NeurIPS), 2024 | , , , , en ,
[URL] |
RAEmoLLM: Retrieval Augmented LLMs for Cross-Domain Misinformation Detection Using In-Context Learning based on Emotional Information, arXiv, 2024 | , , , , en ,
[URL] |
Selective Preference Optimization via Token-Level Reward Function Estimation, arXiv, 2024 | , , , , en ,
[URL] |
SuicidEmoji: Derived Emoji Dataset and Tasks for Suicide-Related Social Content, in: Proceedings of the 47th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR '24), pagina's 1136 - 1141, 2024 | , , , , en ,
[URL] |
2023
A Bipartite Graph is All We Need for Enhancing Emotional Reasoning with Commonsense Knowledge, in: Proceedings of CIKM 2023, pagina's 2917–2927, 2023 | , en ,
[URL] |
Cluster-Level Contrastive Learning for Emotion Recognition in Conversations (2023), in: IEEE Transactions on Affective Computing(1-12) | , , en ,
[DOI] [URL] |
Disentangled Variational Autoencoder for Emotion Recognition in Conversations (2023), in: IEEE Transactions on Affective Computing(1-12) | , en ,
[DOI] [URL] |
Domain-specific Continued Pretraining of Language Models for Capturing Long Context in Mental Health, arXiv, 2023 | , , en ,
[URL] |
Emotion fusion for mental illness detection from social media: A survey (2023), in: Information Fusion, 92(231-246) | , , en ,
[DOI] [URL] |
PHQ-aware depressive symptoms identification with similarity contrastive learning on social media (2023), in: Information Processing & Management, 60:5(103417) | , , , en ,
[DOI] [URL] |
Rethinking large language models in mental health applications, arXiv, 2023 | , , en ,
[URL] |
Sentiment-guided Transformer with Severity-aware Contrastive Learning for Depression Detection on Social Media, in: Proceedings of BioNLP 2023, pagina's 114–126, 2023 | , en ,
[URL] |
Towards Interpretable Mental Health Analysis with Large Language Models, in: Proceedings of EMNLP 2023, pagina's 6056–6077, 2023 | , , , , en ,
[URL] |
2022
A Mental State Knowledge-Aware and Contrastive Network for Early Stress and Depression Detection on Social Media (2022), in: Information Processing and Management, 59:4(102961) | , en ,
[DOI] [URL] |