Alle Publikationen, die keinem Thema zugeordnet sind sortiert nach Aktualität
Yano, K., Luo, Z., Huang, J., Xie, Q., Asada, M., Yuan, C., Yang, K, Miwa, M., Ananiadou, S. und Tsujii, J., ELAINE-medLLM: Lightweight English Japanese Chinese Trilingual Large Language Model for Bio-medical Domain, in: Proceedings of the 31st International Conference on Computational Linguistics (COLING 2025), In Press
Yu, Z. und Ananiadou, S., Interpreting Arithmetic Mechanism in Large Language Models through Comparative Neuron Analysis, in: Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing, Seiten 3293–3306, 2024
[DOI]
[URL]
Yu, Z. und Ananiadou, S., Neuron-Level Knowledge Attribution in Large Language Models, in: Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing, Seiten 3267–3280, 2024
[DOI]
[URL]
Luo, Z., Liu, L., Ananiadou, S. und Xie, Q., Graph Contrastive Topic Model (2024), in: Expert Systems with Applications, 255:Part C(124631)
[DOI]
[URL]
Goldsack, T., Luo, Z., Xie, Q., Scarton, C., Shardlow, M., Ananiadou, S. und Lin, C., Overview of the BioLaySumm 2023 Shared Task on Lay Summarization of Biomedical Research Articles, in: Proceedings of the 22nd Workshop on Biomedical Natural Language Processing and BioNLP Shared Tasks, Seiten 468-477, 2024
[DOI]
[URL]
Wang, Y., Feng, D., Dai, Y., Chen, Z., Huang, J., Ananiadou, S., Xie, Q. und Wang, H., HARMONIC: Harnessing LLMs for Tabular Data Synthesis and Privacy Protection, in: Proceedings of the Thirty-Eighth Annual Conference on Neural Information Processing Systems (NeurIPS), 2024
[URL]
Yang, K, Liu, Z., Xie, Q., Huang, J., Zhang, T. und Ananiadou, S., MetaAligner: Towards Generalizable Multi-Objective Alignment of Language Models, in: Proceedings of the Thirty-Eighth Annual Conference on Neural Information Processing Systems (NeurIPS), 2024
[URL]
Xie, Q., Huang, J., Li, D., Chen, Z., Xiang, R., Xiao, M., Yu, Y., Somasundaram, V., Yang, K, Yuan, C., Luo, Z., Liu, Z., He, Y., Jiang, Y., Li, H., Feng, D., Liu, X. -Y., Wang, B., Wang, H., Lai, Y., Suchow, J., Lopez-Lira, A., Peng, M. und Ananiadou, S., FinNLP-AgentScen-2024 Shared Task: Financial Challenges in Large Language Models - FinLLMs, in: Proceedings of the Eighth Financial Technology and Natural Language Processing and the 1st Agent AI for Scenario Planning, Seiten 119- 126, 2024
[URL]
Liu, Z., Liu, B, Thompson, P., Yang, K und Ananiadou, S., ConspEmoLLM: Conspiracy Theory Detection Using an Emotion-Based Large Language Model, in: Proceedings of the 13th International Conference on Prestigious Applications of Intelligent Systems (PAIS-2024), 2024
[DOI]
[URL]
Zhang, T., Yang, K, Ji, S., Liu, B, Xie, Q. und Ananiadou, S., SuicidEmoji: Derived Emoji Dataset and Tasks for Suicide-Related Social Content, in: Proceedings of the 47th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR '24), Seiten 1136 - 1141, 2024
[URL]
Zhang, X., Xiang, R., Yuan, C., Feng, D., Han, W., Lopez-Lira, A., Liu, X. -Y., Ananiadou, S., Peng, M., Huang, J. und Xie, Q., Dólares or Dollars? Unraveling the Bilingual Prowess of Financial LLMs Between Spanish and English, in: Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD '24), Seiten 6236-6246, 2024
[DOI]
[URL]
Yu, Z. und Ananiadou, S., How do Large Language Models Learn In-Context? Query and Key Matrices of In-Context Heads are Two Towers for Metric Learning, in: Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing, Seiten 3281–3292, 2024
[DOI]
[URL]