New article on automated detection and analysis of depression and stress in social media data
2022-09-27
Yang, K,, Zhang, T. and Ananiadou, S., A Mental State Knowledge-Aware and Contrastive Network for Early Stress and Depression Detection on Social Media (2022), Information Processing and Management, 59:4(102961)
Abstract
Stress and depression detection on social media aim at the analysis of stress and identification of depression tendency from social media posts, which provide assistance for the early detection of mental health conditions. Existing methods mainly model the mental states of the post speaker implicitly. They also lack the ability to mentalise for complex mental state reasoning. Besides, they are not designed to explicitly capture class-specific features. To resolve the above issues, we propose a mental state Knowledge–aware and Contrastive Network (KC-Net). In detail, we first extract mental state knowledge from a commonsense knowledge base COMET, and infuse the knowledge using Gated Recurrent Units (GRUs) to explicitly model the mental states of the speaker. Then we propose a knowledge–aware mentalisation module based on dot-product attention to accordingly attend to the most relevant knowledge aspects. A supervised contrastive learning module is also utilised to fully leverage label information for capturing class-specific features. We test the proposed methods on a depression detection dataset Depression_Mixed with 3165 Reddit and blog posts, a stress detection dataset Dreaddit with 3553 Reddit posts, and a stress factors recognition dataset SAD with 6850 SMS-like messages. The experimental results show that our method achieves new state-of-the-art results on all datasets: 95.4% of F1 scores on Depression_Mixed, 83.5% on Dreaddit and 77.8% on SAD, with 2.07% average improvement. Factor-specific analysis and ablation study prove the effectiveness of all proposed modules, while UMAP analysis and case study visualise their mechanisms. We believe our work facilitates detection and analysis of depression and stress on social media data, and shows potential for applications on other mental health conditions.
Previous item | Next item |
Back to news summary page |
Featured News
- Call for papers: CL4Health @ NAACL 2025
- Prof. Sophia Ananiadou accepted as an ELLIS fellow
- Invited talk at the 15th Marbach Castle Drug-Drug Interaction Workshop
- BioNLP 2025 and Shared Tasks accepted for co-location at ACL 2025
- Prof. Junichi Tsujii honoured as Person of Cultural Merit in Japan
- Participation in panel at Cyber Greece 2024 Conference, Athens
- Shared Task on Financial Misinformation Detection at FinNLP-FNP-LLMFinLegal
- New Named Entity Corpus for Occupational Substance Exposure Assessment
- FinNLP-FNP-LLMFinLegal @ COLING-2025 - Call for papers
Other News & Events
- Keynote talk at Manchester Law and Technology Conference
- Keynote talk at ACM Summer School on Data Science, Athens
- Invited talk at the 8th Annual Women in Data Science Event at the American University of Beirut
- Invited talk at the 2nd Symposium on NLP for Social Good (NSG), University of Liverpool
- Invited talk at Annual Meeting of the Danish Society of Occupational and Environmental Medicine