Format | glb(+$FS1, +$FS2, -$FS3) |
---|---|
-$FS3 is the Greatest Lower Bound of $FS1 and $FS2. Let's try these. | |
?- A=[1,1|A], B=[1,1,1|B], glb(A,B,GLB). ?- A=[1,2|A], B=[1,2,3|B], glb(A,B,GLB). |
Format | restriction_cycle(+$FS) | |||
---|---|---|---|---|
Arguments |
| |||
restrict cycles in $FS |
Format | have_cycle(+$FS) | |||
---|---|---|---|---|
Arguments |
| |||
this is true if $FS has a cycle |
Format | find_fail_point(+$A, +$B, -$PATH, -$REASON) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Arguments |
| ||||||||||||
This predicate shows us the failing point when we try to unify $A and $B.
$PATH is the path to the failing point, and $REASON is the reason
of its unification failure. $REASON should be,
|
Format | find_all_fail_point(+$A, +$B, -$PATHs, -$REASONs) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Arguments |
| ||||||||||||
See also | find_fail_point/4 | ||||||||||||
This predicate finds all the unification failing points in $A and $B. In this predicate, 'find_fail_point' is called to find a failing point and all the failing points are retrieved by removing the last failing point in $A by 'restriction' and calling 'find_fail_point' again. |