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Abstract

We investigated the performance efficacy
of beam search parsing and deep parsing
techniques in probabilistic HPSG parsing
using the Penn treebank. We first tested
the beam thresholding and iterative pars-
ing developed for PCFG parsing with an
HPSG. Next, we tested three techniques
originally developed for deep parsing: quick
check, large constituent inhibition, and hy-
brid parsing with a CFG chunk parser. The
contributions of the large constituent inhi-
bition and global thresholding were not sig-
nificant, while the quick check and chunk
parser greatly contributed to total parsing
performance. The precision, recall and av-
erage parsing time for the Penn treebank
(Section 23) were 87.85%, 86.85%, and 360
ms, respectively.

1 Introduction

We investigated the performance efficacy of beam
search parsing and deep parsing techniques in
probabilistic head-driven phrase structure grammar
(HPSG) parsing for the Penn treebank. We first
applied beam thresholding techniques developed for
CFG parsing to HPSG parsing, including local
thresholding, global thresholding (Goodman, 1997),
and iterative parsing (Tsuruoka and Tsujii, 2005b).

Next, we applied parsing techniques developed for
deep parsing, including quick check (Malouf et al.,
2000), large constituent inhibition (Kaplan et al.,
2004) and hybrid parsing with a CFG chunk parser
(Daum et al., 2003; Frank et al., 2003; Frank, 2004).
The experiments showed how each technique con-
tributes to the final output of parsing in terms of
precision, recall, and speed for the Penn treebank.

Unification-based grammars have been extensively
studied in terms of linguistic formulation and com-
putation efficiency. Although they provide precise
linguistic structures of sentences, their processing is
considered expensive because of the detailed descrip-
tions. Since efficiency is of particular concern in prac-
tical applications, a number of studies have focused
on improving the parsing efficiency of unification-
based grammars (Oepen et al., 2002). Although sig-
nificant improvements in efficiency have been made,
parsing speed is still not high enough for practical
applications.

The recent introduction of probabilistic models of
wide-coverage unification-based grammars (Malouf
and van Noord, 2004; Kaplan et al., 2004; Miyao
and Tsujii, 2005) has opened up the novel possibil-
ity of increasing parsing speed by guiding the search
path using probabilities. That is, since we often re-
quire only the most probable parse result, we can
compute partial parse results that are likely to con-
tribute to the final parse result. This approach has
been extensively studied in the field of probabilistic



CFG (PCFG) parsing, such as Viterbi parsing and
beam thresholding.

While many methods of probabilistic parsing for
unification-based grammars have been developed,
their strategy is to first perform exhaustive pars-
ing without using probabilities and then select the
highest probability parse. The behavior of their al-
gorithms is like that of the Viterbi algorithm for
PCFG parsing, so the correct parse with the high-
est probability is guaranteed. The interesting point
of this approach is that, once the exhaustive pars-
ing is completed, the probabilities of non-local de-
pendencies, which cannot be computed during pars-
ing, are computed after making a packed parse for-
est. Probabilistic models where probabilities are as-
signed to the CFG backbone of the unification-based
grammar have been developed (Kasper et al., 1996;
Briscoe and Carroll, 1993; Kiefer et al., 2002), and
the most probable parse is found by PCFG parsing.
This model is based on PCFG and not probabilis-
tic unification-based grammar parsing. Geman and
Johnson (Geman and Johnson, 2002) proposed a dy-
namic programming algorithm for finding the most
probable parse in a packed parse forest generated by
unification-based grammars without expanding the
forest. However, the efficiency of this algorithm is
inherently limited by the inefficiency of exhaustive
parsing.

In this paper we describe the performance of beam
thresholding, including iterative parsing, in proba-
bilistic HPSG parsing for a large-scale corpora, the
Penn treebank. We show how techniques developed
for efficient deep parsing can improve the efficiency
of probabilistic parsing. These techniques were eval-
uated in experiments on the Penn Treebank (Marcus
et al., 1994) with the wide-coverage HPSG parser de-
veloped by Miyao et al. (Miyao et al., 2005; Miyao
and Tsujii, 2005).

2 HPSG and probabilistic models

HPSG (Pollard and Sag, 1994) is a syntactic theory
based on lexicalized grammar formalism. In HPSG,
a small number of schemata describe general con-
struction rules, and a large number of lexical en-
tries express word-specific characteristics. The struc-
tures of sentences are explained using combinations
of schemata and lexical entries. Both schemata and
lexical entries are represented by typed feature struc-
tures, and constraints represented by feature struc-
tures are checked with unification.

Figure 1 shows an example of HPSG parsing of
the sentence “Spring has come.” First, each of the
lexical entries for “has” and “come” is unified with a
daughter feature structure of the Head-Complement
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Figure 1: HPSG parsing

Schema. Unification provides the phrasal sign of
the mother. The sign of the larger constituent is
obtained by repeatedly applying schemata to lexi-
cal/phrasal signs. Finally, the parse result is output
as a phrasal sign that dominates the sentence.

Given set W of words and set F of feature struc-
tures, an HPSG is formulated as a tuple, G = 〈L,R〉,
where

L = {l = 〈w,F 〉|w ∈ W, F ∈ F} is a set of lexical
entries, and

R is a set of schemata, i.e., r ∈ R is a partial
function: F × F → F .

Given a sentence, an HPSG computes a set of phrasal
signs, i.e., feature structures, as a result of parsing.

Previous studies (Abney, 1997; Johnson et al.,
1999; Riezler et al., 2000; Miyao et al., 2003; Mal-
ouf and van Noord, 2004; Kaplan et al., 2004; Miyao
and Tsujii, 2005) defined a probabilistic model of
unification-based grammars as a log-linear model or
maximum entropy model (Berger et al., 1996). The
probability of parse result T assigned to given sen-
tence w = 〈w1, . . . , wn〉 is

p(T |w) =
1

Zw
exp

(∑

i

λifi(T )

)

Zw =
∑

T ′
exp

(∑

i

λifi(T ′)

)
,

where λi is a model parameter, and fi is a feature
function that represents a characteristic of parse tree
T . Intuitively, the probability is defined as the nor-
malized product of the weights exp(λi) when a char-
acteristic corresponding to fi appears in parse result
T . Model parameters λi are estimated using numer-



ical optimization methods (Malouf, 2002) so as to
maximize the log-likelihood of the training data.

However, the above model cannot be easily esti-
mated because the estimation requires the computa-
tion of p(T |w) for all parse candidates assigned to
sentence w. Because the number of parse candidates
is exponentially related to the length of the sentence,
the estimation is intractable for long sentences.

To make the model estimation tractable, Ge-
man and Johnson (Geman and Johnson, 2002) and
Miyao and Tsujii (Miyao and Tsujii, 2002) proposed
a dynamic programming algorithm for estimating
p(T |w). They assumed that features are functions
on nodes in a packed parse forest. That is, parse tree
T is represented by a set of nodes, i.e., T = {c}, and
the parse forest is represented by an and/or graph
of the nodes. From this assumption, we can redefine
the probability as

p(T |w) =
1

Zw
exp

(∑

c∈T

∑

i

λifi(c)

)

Zw =
∑

T ′
exp

(∑

c∈T ′

∑

i

λifi(c)

)
.

A packed parse forest has a structure similar to a
chart of CFG parsing, and c corresponds to an edge
in the chart. This assumption corresponds to the
independence assumption in PCFG; that is, only
a nonterminal symbol of a mother is considered in
further processing by ignoring the structure of its
daughters. With this assumption, we can compute
the figures of merit (FOMs) of partial parse results.

This assumption restricts the possibility of feature
functions that represent non-local dependencies ex-
pressed in a parse result. Since unification-based
grammars can express semantic relations, such as
predicate-argument relations, in their structure, the
assumption unjustifiably restricts the flexibility of
probabilistic modeling. However, previous research
(Miyao et al., 2003; Clark and Curran, 2004; Kaplan
et al., 2004) showed that predicate-argument rela-
tions can be represented under the assumption of
feature locality. We thus assumed the locality of fea-
ture functions and exploited it for the efficient search
of probable parse results.

3 Techniques for efficient deep
parsing

Many of the techniques for improving the parsing
efficiency of deep linguistic analysis have been de-
veloped in the framework of lexicalized grammars
such as lexical functional grammar (LFG) (Bresnan,

1982), lexicalized tree adjoining grammar (LTAG)
(Shabes et al., 1988), HPSG (Pollard and Sag, 1994)
or combinatory categorial grammar (CCG) (Steed-
man, 2000). Most of them were developed for ex-
haustive parsing, i.e., producing all parse results that
are given by the grammar (Matsumoto et al., 1983;
Maxwell and Kaplan, 1993; van Noord, 1997; Kiefer
et al., 1999; Malouf et al., 2000; Torisawa et al., 2000;
Oepen et al., 2002; Penn and Munteanu, 2003). The
strategy of exhaustive parsing has been widely used
in grammar development and in parameter training
for probabilistic models.

We tested three of these techniques.

Quick check Quick check filters out non-unifiable
feature structures (Malouf et al., 2000). Sup-
pose we have two non-unifiable feature struc-
tures. They are destructively unified by travers-
ing and modifying them, and then finally they
are found to be not unifiable in the middle of the
unification process. Quick check quickly judges
their unifiability by peeping the values of the
given paths. If one of the path values is not
unifiable, the two feature structures cannot be
unified because of the necessary condition of uni-
fication. In our implementation of quick check,
each edge had two types of arrays. One con-
tained the path values of the edge’s sign; we
call this the sign array. The other contained the
path values of the right daughter of a schema
such that its left daughter is unified with the
edge’s sign; we call this a schema array. When
we apply a schema to two edges, e1 and e2, the
schema array of e1 and the sign array of e2 are
quickly checked. If it fails, then quick check re-
turns a unification failure. If it succeeds, the
signs are unified with the schemata, and the re-
sult of unification is returned.

Large constituent inhibition (Kaplan et al.,
2004) It is unlikely for a large medial edge to
contribute to the final parsing result if it spans
more than 20 words and is not adjacent to the
beginning or ending of the sentence. Large
constituent inhibition prevents the parser from
generating medial edges that span more than
some word length.

HPSG parsing with a CFG chunk parser A
hybrid of deep parsing and shallow parsing
was recently found to improve the efficiency
of deep parsing (Daum et al., 2003; Frank et
al., 2003; Frank, 2004). As a preprocessor, the
shallow parsing must be very fast and achieve
high precision but not high recall so that the



procedure Viterbi(〈w1, . . . , wn〉, 〈L′, R〉, κ, δ, θ)
for i = 1 to n

foreach Fu ∈ {F |〈wi, F 〉 ∈ L}
α =

∑
i
λifi(Fu)

π[i− 1, i] ← π[i− 1, i] ∪ {Fu}
if (α > ρ[i− 1, i, Fu]) then

ρ[i− 1, i, Fu] ← α
for d = 1 to n

for i = 0 to n− d
j = i + d
for k = i + 1 to j − 1

foreach Fs ∈ π[i, k], Ft ∈ π[k, j], r ∈ R
if F = r(Fs, Ft) has succeeded

α = ρ[i, k, Fs] + ρ[k, j, Ft] +
∑

i
λifi(F )

π[i, j] ← π[i, j] ∪ {F}
if (α > ρ[i, j, F ]) then

ρ[i, j, F ] ← α

Figure 2: Pseudo-code of Viterbi algorithms for probabilistic HPSG parsing

total parsing performance in terms of precision,
recall and speed is not degraded. Because there
is trade-off between speed and accuracy in
this approach, the total parsing performance
for large-scale corpora like the Penn treebank
should be measured. We introduce a CFG
chunk parser (Tsuruoka and Tsujii, 2005a) as a
preprocessor of HPSG parsing. Chunk parsers
meet the requirements for preprocessors; they
are very fast and have high precision. The
grammar for the chunk parser is automatically
extracted from the CFG treebank translated
from the HPSG treebank, which is generated
during grammar extraction from the Penn
treebank. The principal idea of using the chunk
parser is to use the bracket information, i.e.,
parse trees without non-terminal symbols, and
prevent the HPSG parser from generating edges
that cross brackets.

4 Beam thresholding for HPSG
parsing

4.1 Simple beam thresholding

Many algorithms for improving the efficiency of
PCFG parsing have been extensively investigated.
They include grammar compilation (Tomita, 1986;
Nederhof, 2000), the Viterbi algorithm, controlling
search strategies without FOM such as left-corner
parsing (Rosenkrantz and Lewis II, 1970) or head-
corner parsing (Kay, 1989; van Noord, 1997), and
with FOM such as the beam search, the best-first
search or A* search (Chitrao and Grishman, 1990;
Caraballo and Charniak, 1998; Collins, 1999; Rat-
naparkhi, 1999; Charniak, 2000; Roark, 2001; Klein

and Manning, 2003). The beam search and best-
first search algorithms significantly reduce the time
required for finding the best parse at the cost of los-
ing the guarantee of finding the correct parse.

The CYK algorithm, which is essentially a bottom-
up parser, is a natural choice for non-probabilistic
HPSG parsers. Many of the constraints are ex-
pressed as lexical entries in HPSG, and bottom-up
parsers can use those constraints to reduce the search
space in the early stages of parsing.

For PCFG, extending the CYK algorithm to out-
put the Viterbi parse is straightforward (Ney, 1991;
Jurafsky and Martin, 2000). The parser can effi-
ciently calculate the Viterbi parse by taking the max-
imum of the probabilities of the same nonterminal
symbol in each cell. With the probabilistic model
defined in Section 2, we can also define the Viterbi
search for unification-based grammars (Geman and
Johnson, 2002). Figure 2 shows the pseudo-code of
Viterbi algorithm. The π[i, j] represents the set of
partial parse results that cover words wi+1, . . . , wj ,
and ρ[i, j, F ] stores the maximum FOM of partial
parse result F at cell (i, j). Feature functions are
defined over lexical entries and results of rule appli-
cations, which correspond to conjunctive nodes in a
feature forest. The FOM of a newly created partial
parse, F , is computed by summing the values of ρ of
the daughters and an additional FOM of F .

The Viterbi algorithm enables various pruning
techniques to be used for efficient parsing. Beam
thresholding (Goodman, 1997) is a simple and effec-
tive technique for pruning edges during parsing. In
each cell of the chart, the method keeps only a por-
tion of the edges which have higher FOMs compared
to the other edges in the same cell.



procedure BeamThresholding(〈w1, . . . , wn〉, 〈L′, R〉, κ, δ, θ)
for i = 1 to n

foreach Fu ∈ {F |〈wi, F 〉 ∈ L}
α =

∑
i
λifi(Fu)

π[i− 1, i] ← π[i− 1, i] ∪ {Fu}
if (α > ρ[i− 1, i, Fu]) then

ρ[i− 1, i, Fu] ← α
for d = 1 to n

for i = 0 to n− d
j = i + d
for k = i + 1 to j − 1

foreach Fs ∈ π[i, k], Ft ∈ π[k, j], r ∈ R
if F = r(Fs, Ft) has succeeded

α = ρ[i, k, Fs] + ρ[k, j, Ft] +
∑

i
λifi(F )

π[i, j] ← π[i, j] ∪ {F}
if (α > ρ[i, j, F ]) then

ρ[i, j, F ] ← α
LocalThresholding(κ, δ)

GlobalThresholding(n, θ)

procedure LocalThresholding(κ, δ)
sort π[i, j] according to ρ[i, j, F ]
π[i, j] ← {π[i, j]1, . . . , π[i, j]κ}
αmax = maxF ρ[i, j, F ]
foreach F ∈ π[i, j]

if ρ[i, j, F ] < αmax − δ
π[i, j] ← π[i, j]\{F}

procedure GlobalThresholding(n, θ)
f [0..n] ← {0,−∞ −∞, . . . ,−∞}
b[0..n] ← {−∞,−∞, . . . ,−∞, 0}
#forward
for i = 0 to n− 1

for j = i + 1 to n
foreach F ∈ π[i, j]

f [j] ← max(f [j], f [i] + ρ[i, j, F ])
#backward
for i = n− 1 to 0

for j = i + 1 to n
foreach F ∈ π[i, j]

b[i] ← max(b[i], b[j] + ρ[i, j, F ])
#global thresholding
αmax = f [n]
for i = 0 to n− 1

for j = i + 1 to n
foreach F ∈ π[i, j]

if f [i] + ρ[i, j, F ] + b[j] < αmax − θ then
π[i, j] ← π[i, j]\{F}

Figure 3: Pseudo-code of local beam search and global beam search algorithms for probabilistic HPSG
parsing



procedure IterativeBeamThresholding(w, G, κ0, δ0, θ0, ∆κ, ∆δ, ∆θ, κlast, δlast, θlast)
κ ← κ0; δ ← δ0; θ ← θ0

loop while κ ≤ κlast and δ ≤ δlast and θ ≤ θlast
call BeamThresholding(w, G, κ, δ, θ)
if π[1, n] 6= ∅ then exit
κ ← κ + ∆κ; δ ← δ + ∆δ; θ ← θ + ∆θ

Figure 4: Pseudo-code of iterative beam thresholding

We tested three selection schemes for deciding
which edges to keep in each cell.

Local thresholding by number of edges Each
cell keeps the top κ edges based on their FOMs.

Local thresholding by beam width Each cell
keeps the edges whose FOM is greater than
αmax − δ, where αmax is the highest FOM
among the edges in the cell.

Global thresholding by beam width Each cell
keeps the edges whose global FOM is greater
than αmax−θ, where αmax is the highest global
FOM in the chart.

Figure 3 shows the pseudo-code of local beam
search, and global beam search algorithms for prob-
abilistic HPSG parsing. The code for local thresh-
olding is inserted at the end of the computation for
each cell. In Figure 3, π[i, j]k denotes the k-th ele-
ment in sorted set π[i, j]. We first take the first κ
elements that have higher FOMs and then remove
the elements with FOMs lower than αmax − δ.

Global thresholding is also used for pruning edges,
and was originally proposed for CFG parsing (Good-
man, 1997). It prunes edges based on their global
FOM and the best global FOM in the chart. The
global FOM of an edge is defined as its FOM plus its
forward and backward FOMs, where the forward and
backward FOMs are rough estimations of the outside
FOM of the edge. The global thresholding is per-
formed immediately after each line of the CYK chart
is completed. The forward FOM is calculated first,
and then the backward FOM is calculated. Finally,
all edges with a global FOM lower than αmax − θ
are pruned. Figure 3 gives further details of the al-
gorithm.

4.2 Iterative beam thresholding

We tested the iterative beam thresholding proposed
by Tsuruoka and Tsujii (2005b). We started the
parsing with a narrow beam. If the parser output
results, they were taken as the final parse results. If
the parser did not output any results, we widened the

Table 1: Abbreviations used in experimental results

num local beam thresholding by number
width local beam thresholding by width
global global beam thresholding by width
iterative iterative parsing with local beam

thresholding by number and width
chp parsing with CFG chunk parser

beam, and reran the parsing. We continued widen-
ing the beam until the parser output results or the
beam width reached some limit.

The pseudo-code is presented in Figure 4. It calls
the beam thresholding procedure shown in Figure 3
and increases parameters κ and δ until the parser
outputs results, i.e., π[1, n] 6= ∅.

Preserved iterative parsing Our implemented
CFG parser with iterative parsing cleared the
chart and edges at every iteration although the
parser regenerated the same edges using those
generated in the previous iteration. This is
because the computational cost of regenerating
edges is smaller than that of reusing edges to
which the rules have already been applied. For
HPSG parsing, the regenerating cost is even
greater than that for CFG parsing. In our
implementation of HPSG parsing, the chart
and edges were not cleared during the iterative
parsing. Instead, the pruned edges were marked
as thresholded ones. The parser counted the
number of iterations, and when edges were
generated, they were marked with the iteration
number, which we call the generation. If
edges were thresholded out, the generation was
replaced with the current iteration number plus
1. Suppose we have two edges, e1 and e2. The
grammar rules are applied iff both e1 and e2 are
not thresholded out, and the generation of e1

or e2 is equal to the current iteration number.
Figure 5 shows the pseudo-code of preserved
iterative parsing.



procedure BeamThresholding(〈w1, . . . , wn〉, 〈L′, R〉, κ, δ, θ, iternum)
for i = 1 to n

foreach Fu ∈ {F |〈wi, F 〉 ∈ L}
α =

∑
i
λifi(Fu)

π[i− 1, i] ← π[i− 1, i] ∪ {Fu}
if (α > ρ[i− 1, i, Fu]) then

ρ[i− 1, i, Fu] ← α
for d = 1 to n

for i = 0 to n− d
j = i + d
for k = i + 1 to j − 1

foreach Fs ∈ φ[i, k], Ft ∈ φ[k, j], r ∈ R
if gen[i, k, Fs] = iternum ∨ gen[k, j, Ft] = iternum

if F = r(Fs, Ft) has succeeded
gen[i, j, F ] ← iternum
α = ρ[i, k, Fs] + ρ[k, j, Ft] +

∑
i
λifi(F )

π[i, j] ← π[i, j] ∪ {F}
if (α > ρ[i, j, F ]) then

ρ[i, j, F ] ← α
LocalThresholding(κ, δ, iternum)

GlobalThresholding(n, θ, iternum)

procedure LocalThresholding(κ, δ, iternum)
sort π[i, j] according to ρ[i, j, F ]
φ[i, j] ← {π[i, j]1, . . . , π[i, j]κ}
αmax = maxF ρ[i, j, F ]
foreach F ∈ φ[i, j]

if ρ[i, j, F ] < αmax − δ
φ[i, j] ← φ[i, j]\{F}

foreach F ∈ (π[i, j]− φ[i, j])
gen[i, j, F ] ← iternum + 1

procedure GlobalThresholding(n, θ, iternum)
f [0..n] ← {0,−∞ −∞, . . . ,−∞}
b[0..n] ← {−∞,−∞, . . . ,−∞, 0}
#forward
for i = 0 to n− 1

for j = i + 1 to n
foreach F ∈ π[i, j]

f [j] ← max(f [j], f [i] + ρ[i, j, F ])
#backward
for i = n− 1 to 0

for j = i + 1 to n
foreach F ∈ π[i, j]

b[i] ← max(b[i], b[j] + ρ[i, j, F ])
#global thresholding
αmax = f [n]
for i = 0 to n− 1

for j = i + 1 to n
foreach F ∈ φ[i, j]

if f [i] + ρ[i, j, F ] + b[j] < αmax − θ then
φ[i, j] ← φ[i, j]\{F}

foreach F ∈ (π[i, j]− φ[i, j])
gen[i, j, F ] ← iternum + 1

procedure IterativeBeamThresholding(w, G, κ0, δ0, θ0, ∆κ, ∆δ, ∆θ, κlast, δlast, θlast)
κ ← κ0; δ ← δ0; θ ← θ0; iternum = 0
loop while κ ≤ κlast and δ ≤ δlast and θ ≤ θlast

call BeamThresholding(w, G, κ, δ, θ, iternum)
if π[1, n] 6= ∅ then exit
κ ← κ + ∆κ; δ ← δ + ∆δ; θ ← θ + ∆θ; iternum ← iternum + 1

Figure 5: Pseudo-code of preserved iterative parsing for HPSG



Table 2: Experimental results for development set (section 22) and test set (section 23)

Precision Recall F-score Avg. Time (ms) No. of failed sentences
development set 88.21% 87.32% 87.76% 360 12
test set 87.85% 86.85% 87.35% 360 15
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Figure 7: Parsing time for the sentences in Section 24 of less than 15 words of Viterbi parsing (none) (Left)
and iterative parsing (iterative) (Right)
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Figure 6: Parsing time versus sentence length for the
sentences in Section 23 of less than 40 words

5 Evaluation

We evaluated the efficiency of the parsing techniques
by using the HPSG for English developed by Miyao
et al. (2005). The lexicon of the grammar was ex-
tracted from Sections 02-21 of the Penn Treebank
(Marcus et al., 1994) (39,832 sentences). The gram-
mar consisted of 2,284 lexical entry templates for
10,536 words1. The probabilistic disambiguation
model of the grammar was trained using the same
portion of the treebank (Miyao and Tsujii, 2005).

1Lexical entry templates for POS are also developed.
They are assigned to unknown words.

The model included 529,856 features. The param-
eters for beam searching were determined manually
by trial and error using Section 22; δ0 = 12,∆δ =
6, δlast = 30, κ0 = 6.0,∆κ = 3.0, κlast = 15.1,
θ0 = 8.0,∆θ = 4.0, and θlast = 20.1. We used
the chunk parser developed by Tsuruoka and Tsu-
jii (2005a). Table 1 shows the abbreviations used in
presenting the results.

We measured the accuracy of the predicate-
argument relations output by the parser. A
predicate-argument relation is defined as a tuple
〈σ,wh, a, wa〉, where σ is the predicate type (e.g., ad-
jective, intransitive verb), wh is the head word of the
predicate, a is the argument label (MODARG, ARG1,
..., ARG4), and wa is the head word of the argu-
ment. Precision/recall is the ratio of tuples correctly
identified by the parser. This evaluation scheme was
the same as used in previous evaluations of lexical-
ized grammars (Hockenmaier, 2003; Clark and Cur-
ran, 2004; Miyao and Tsujii, 2005). The experiments
were conducted on an AMD Opteron server with a
2.4-GHz CPU. Section 22 of the Treebank was used
as the development set, and performance was evalu-
ated using sentences of less than 40 words in Section
23 (2,164 sentences, 20.3 words/sentence). The per-
formance of each parsing technique was analyzed us-
ing the sentences in Section 24 of less than 15 words
(305 sentences) and less than 40 words (1145 sen-
tences).

Table 2 shows the parsing performance using all
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Figure 8: F-score versus average parsing time

���

�� �

�� �

�� �

�� �

� ��

� � �

� � �

� � �

� 	 � 
 	 � 	 	 � �	 � � 	 �

�  � � ��� � ��� � ���� ���� � � �� �

�
�
�
�
�
�
�

���������

���������� ��

�����������!"#�!

�����������!"#�!� ��

��� � ��� �

��� � ��� � � ��

��� � ��� � ��!"#�!

��� � ��� � ��!"#�!� ��

Figure 9: F-score versus average parsing time with/without chunk parser



Table 3: Viterbi parsing versus beam thresholding versus iterative parsing

Precision Recall F-score Avg. Time (ms) No. of failed sentences
viterbi parsing (none) 88.22% 87.94% 88.08% 103923 2
beam search parsing (num+width) 88.96% 82.38% 85.54% 88 26
iterative parsing (iterative) 87.61% 87.24% 87.42% 99 2

Table 4: Contribution to performance of each implementation

Precision Recall F-score Avg. Time (ms) diff(*) No. of failed sentences
full 85.49% 84.21% 84.84% 407 0 13
full−piter 85.74% 84.70% 85.22% 631 224 10
full−qc 85.49% 84.21% 84.84% 562 155 13
full−chp 85.77% 84.76% 85.26% 510 103 10
full−global 85.23% 84.32% 84.78% 434 27 9
full−lci 85.68% 84.40% 85.03% 424 17 13
full−piter−qc−chp−global−lci 85.33% 84.71% 85.02% 1033 626 6

full ... iterative + global + chp
piter ... preserved iterative parsing
qc ... quick check
lci ... large constituent inhibition
diff(*) ... (Avg. Time of full) - (Avg. Time)

thresholding techniques and implementations de-
scribed in Section 4 for the sentences in the devel-
opment set (Section 22) and the test set (Section 23)
of less than 40 words. In the table, precision, recall,
average parsing time per sentence, and the number of
sentences that the parser failed to parse are detailed.
Figure 6 shows the distribution of parsing time for
the sentence length.

Table 3 shows the performance of the Viterbi pars-
ing, beam search parsing, and iterative parsing for
the sentences in Section 24 of less than 15 words
2. The parsing without beam searching took more
than 1,000 times longer than with beam searching.
However, the beam searching reduced the recall from
87.9% to 82.4%. The main reason for this reduc-
tion was parsing failure. That is, the parser could
not output any results when the beam was too nar-
row instead of producing incorrect parse results. Al-
though iterative parsing was originally developed for
efficiency, the results revealed that it also increases
the recall. This is because the parser continues try-
ing until some results are output. Figure 7 shows the
logarithmic graph of parsing time for the sentence
length. The left side of the figure shows the parsing
time of the Viterbi parsing and the right side shows
the parsing time of the iterative parsing.

Figure 8 shows the performance of the parsing
techniques for different parameters for the sentences
in Section 24 of less than 40 words. The combina-
tions of thresholding techniques achieved better re-

2The sentence length was limited to 15 words because
of inefficiency of Viterbi parsing

sults than the single techniques. Local thresholding
using the width (width) performed better than that
using the number (num). The combination of us-
ing width and number (num+width) performed bet-
ter than single local and single global thresholding.
The superiority of iterative parsing (iterative) was
again demonstrated in this experiment. Although we
did not observe significant improvement with global
thresholding, the global plus iterative combination
slightly improved performance.

Figure 9 shows the performance with and with-
out the chunk parser. The lines with white symbols
represent parsing without the chunk parser, and the
lines with black symbols represent parsing with the
chunk parser. The chunk parser improved the to-
tal parsing performance significantly. The improve-
ments with global thresholding were less with the
chunk parser.

Finally, Table 4 shows the contribution to perfor-
mance of each implementation for the sentences in
Section 24 of less than 40 words. The ‘full’ means
the parser including all thresholding techniques and
implementations described in Section 4. The ‘full
− x’ means the full minus x. The preserved itera-
tive parsing, the quick check, and the chunk parser
greatly contributed to the final parsing speed, while
the global thresholding and large constituent inhibi-
tion did not.

6 Conclusion

We have described the results of experiments with a
number of existing techniques in head-driven phrase



structure grammar (HPSG) parsing. Simple beam
thresholding, similar to that for probabilistic CFG
(PCFG) parsing, significantly increased the parsing
speed over Viterbi algorithm, but reduced the re-
call because of parsing failure. Iterative parsing sig-
nificantly increased the parsing speed without de-
grading precision or recall. We tested three tech-
niques originally developed for deep parsing: quick
check, large constituent inhibition, and HPSG pars-
ing with a CFG chunk parser. The contributions
of the large constituent inhibition and global thresh-
olding were not significant, while the quick check and
chunk parser greatly contributed to total parsing per-
formance. The precision, recall and average parsing
time for the Penn treebank (Section 23) were 87.85%,
86.85%, and 360 ms, respectively.
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