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Abstract

This paper defines a generative probabilis-
tic model of parse trees, which we call
PCFG-LA. This model is an extension of
PCFG in which non-terminal symbols are
augmented with latent variables. Fine-
grained CFG rules are automatically in-
duced from a parsed corpus by training a
PCFG-LA model using an EM-algorithm.
Because exact parsing with a PCFG-LA is
NP-hard, several approximations are de-
scribed and empirically compared. In ex-
periments using the Penn WSJ corpus, our
automatically trained model gave a per-
formance of 86.6% (F � , sentences � 40
words), which is comparable to that of an
unlexicalized PCFG parser created using
extensive manual feature selection.

1 Introduction

Variants of PCFGs form the basis of several broad-
coverage and high-precision parsers (Collins, 1999;
Charniak, 1999; Klein and Manning, 2003). In those
parsers, the strong conditional independence as-
sumption made in vanilla treebank PCFGs is weak-
ened by annotating non-terminal symbols with many
‘features’ (Goodman, 1997; Johnson, 1998). Exam-
ples of such features are head words of constituents,
labels of ancestor and sibling nodes, and subcatego-
rization frames of lexical heads. Effective features
and their good combinations are normally explored
using trial-and-error.

This paper defines a generative model of parse
trees that we call PCFG with latent annotations
(PCFG-LA). This model is an extension of PCFG
models in which non-terminal symbols are anno-
tated with latent variables. The latent variables work
just like the features attached to non-terminal sym-
bols. A fine-grained PCFG is automatically induced
from parsed corpora by training a PCFG-LA model
using an EM-algorithm, which replaces the manual
feature selection used in previous research.

The main focus of this paper is to examine the
effectiveness of the automatically trained models in
parsing. Because exact inference with a PCFG-LA,
i.e., selection of the most probable parse, is NP-hard,
we are forced to use some approximation of it. We
empirically compared three different approximation
methods. One of the three methods gives a perfor-
mance of 86.6% (F � , sentences � 40 words) on the
standard test set of the Penn WSJ corpus.

Utsuro et al. (1996) proposed a method that auto-
matically selects a proper level of generalization of
non-terminal symbols of a PCFG, but they did not
report the results of parsing with the obtained PCFG.
Henderson’s parsing model (Henderson, 2003) has a
similar motivation as ours in that a derivation history
of a parse tree is compactly represented by induced
hidden variables (hidden layer activation of a neu-
ral network), although the details of his approach is
quite different from ours.

2 Probabilistic model

PCFG-LA is a generative probabilistic model of
parse trees. In this model, an observed parse tree
is considered as an incomplete data, and the corre-
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Figure 1: Tree with latent annotations &(' )+* (com-
plete data) and observed tree & (incomplete data).

sponding complete data is a tree with latent annota-
tions. Each non-terminal node in the complete data
is labeled with a complete symbol of the form ,-' ./* ,
where , is the non-terminal symbol of the corre-
sponding node in the observed tree and . is a latent
annotation symbol, which is an element of a fixed
set 0 .

A complete/incomplete tree pair of the sentence,
“the cat grinned,” is shown in Figure 2. The com-
plete parse tree, &(' )+* (left), is generated through
a process just like the one in ordinary PCFGs, but
the non-terminal symbols in the CFG rules are anno-
tated with latent symbols, )2143�. �65 .87 5:9:9:9<; . Thus,
the probability of the complete tree ( &(' )+* ) is= 3>&-' )?* ;
1A@"3CB$' .D�E* ;�FHG 3CB�' .I�E*KJML = ' . 7 *�N = ' .POK* ;
FQG 3RL = ' .P7K*KJMST&-' .8UK*VLW' .YXK* ;
FQG 3RS?&(' .PUK*KJ[Z]\8^ ;�F_G 3RL`' .8X<*KJMa<bcZ ;
FQG 3CN = ' . O *KJdNe' .8fg* ;�FHG 3CNe' .PfK*KJihcj�kClmlD^6n ;g5

where @"3CB�' . � * ; denotes the probability of an occur-
rence of the symbol B$' . � * at a root node and G 3�j ;
denotes the probability of a CFG rule j . The proba-
bility of the observed tree

= 3>& ; is obtained by sum-
ming

= 3>&(' )+* ; for all the assignments to latent an-
notation symbols, ) := 3>& ; 1poq �Er�s oq �tr�s_u:u:u oq % r�s

= 3>&(' )+* ;g9 (1)

Using dynamic programming, the theoretical
bound of the time complexity of the summation in
Eq. 1 is reduced to be proportional to the number of
non-terminal nodes in a parse tree. However, the cal-
culation at node l still has a cost that exponentially
grows with the number of l ’s daughters because we
must sum up the probabilities of v 0wvyx{z � combina-
tions of latent annotation symbols for a node with

n daughters. We thus took a kind of transforma-
tion/detransformation approach, in which a tree is
binarized before parameter estimation and restored
to its original form after parsing. The details of the
binarization are explained in Section 4.

Using syntactically annotated corpora as training
data, we can estimate the parameters of a PCFG-
LA model using an EM algorithm. The algorithm
is a special variant of the inside-outside algorithm
of Pereira and Schabes (1992). Several recent work
also use similar estimation algorithm as ours, i.e,
inside-outside re-estimation on parse trees (Chiang
and Bikel, 2002; Shen, 2004).

The rest of this section precisely defines PCFG-
LA models and briefly explains the estimation algo-
rithm. The derivation of the estimation algorithm is
largely omitted; see Pereira and Schabes (1992) for
details.

2.1 Model definition

We define a PCFG-LA | as a tuple | 1} L�~t� 5 L�� 5 0 5t�-5 @ 5EG�� , where

L ~{��� a set of observable non-terminal symbols

L�� � a set of terminal symbols

0 � a set of latent annotation symbols

� � a set of observable CFG rules

@"3R,(' .Y* ; � the probability of the occurrence

of a complete symbol ,(' .Y* at a root node

G 3�j ; � the probability of a rule j�� � ' 0�* 9
We use , 5t�e5:9:9:9 for non-terminal symbols inL�~t� ; � �:5 ��7 5:9:9:9 for terminal symbols in L(� ;

and . 5E�P5:9:9:9 for latent annotation symbols in 0 .L�~t�<' 0�* denotes the set of complete non-terminal
symbols, i.e., L(~{�<' 0�*I1���,(' .Y*�v�,d��L�~{� 5 .���0�� .
Note that latent annotation symbols are not attached
to terminal symbols.

In the above definition, � is a set of CFG rules
of observable (i.e., not annotated) symbols. For
simplicity of discussion, we assume that � is a
CNF grammar, but extending to the general case
is straightforward. � ' 0�* is the set of CFG rules
of complete symbols, such as N+' ./*�J grinned orB$' .Y*KJML = ' � *�N = ' ��* . More precisely,

� ' 0�*P1i��3R,(' .Y*mJ�� ; v�3R,HJ[� ; � �-� .���0����
��3R,-' ./*KJ � ' � *��T' ��* ; v�3R,�J � � ; � �-� . 5E�P5 �?��0�� 9



We assume that non-terminal nodes in a parse tree& are indexed by integers k�1�� 5:9:9:9�5E� , starting
from the root node. A complete tree is denoted by&(' )+* , where ) 1 3�. �65:9:9:9�5 .Y¡ ; �d0 ¡ is a vec-
tor of latent annotation symbols and .m¢ is the latent
annotation symbol attached to the k -th non-terminal
node.

We do not assume any structured parametrizations
in G and @ ; that is, each G 3�j ; 3�j£� � ' 0_* ; and@"3R,-' ./* ; 3R,-' ./*��_L ~{� ' 0�* ; is itself a parameter to be
tuned. Therefore, an annotation symbol, say, . , gen-
erally does not express any commonalities among
the complete non-terminals annotated by . , such as,-' ./* 5t� ' ./* 5 ^6Z�a .

The probability of a complete parse tree &-' )?* is
defined as

= 3>&(' )+* ; 1A@"3R, � ' . � * ; ¤¥ r�¦¨§�© ªY« G 3�j ;g5 (2)

where , � ' . � * is the label of the root node of &(' )+*
and S(¬D ®Q¯ denotes the multiset of annotated CFG
rules used in the generation of &(' )+* . We have the
probability of an observable tree & by marginalizing
out the latent annotation symbols in &(' )+* :

= 3>& ; 1 o° r�s	± @"3R,���' .I�E* ; ¤¥ r�¦¨§�© ª/« G 3�j ;g5 (3)

where � is the number of non-terminal nodes in & .

2.2 Forward-backward probability

The sum in Eq. 3 can be calculated using a dynamic
programming algorithm analogous to the forward al-
gorithm for HMMs. For a sentence � � ��7 9:9:9 �$²
and its parse tree & , backward probabilities ³ ¢¬ 3�. ;
are recursively computed for the k -th non-terminal
node and for each .A�´0 . In the definition below,L ¢ ��L�~t� denotes the non-terminal label of the k -th
node.

µ If node k is a pre-terminal node above a termi-
nal symbol ��¶ , then ³ ¢¬ 3�. ; 1 G 3RL ¢ ' ./*·J��	¶ ; .

µ Otherwise, let ¸ and ¹ be the two daughter
nodes of k . Then

³ ¢¬ 3�. ; 1 oq{º6» q�¼ r�s
G 3RL ¢ ' ./*KJ�L�¶�' .�¶K*VL(½�' .P½6* ;F ³ ¶ ¬ 3�.�¶ ; ³ ½¬ 3�.P½ ;g9

Using backward probabilities,
= 3>& ; is calculated as= 3>& ; 1¿¾ q � r�s @"3RL � ' . � * ; ³ �¬ 3�. �K; .

We define forward probabilities À ¢¬ 3�. ; , which are
used in the estimation described below, as follows:

µ If node k is the root node (i.e., k = 1), thenÀ ¢¬ 3�. ; 1A@"3RL ¢ ' .Y* ; .
µ If node k has a right sibling ¹ , let ¸ be the

mother node of k . Then

À ¢¬ 3�. ; 1 oq{º<» q�¼ r�s
G 3RL�¶c' .Á¶K*KJML ¢ ' .Y*VL�½Á' .8½�* ;F À ¶¬ 3�.�¶ ; ³ ½¬ 3�.P½ ;g9

µ If node k has a left sibling, À ¢¬ 3�. ; is defined
analogously.

2.3 Estimation

We now derive the EM algorithm for PCFG-LA,
which estimates the parameters Â�1�3 G"5 @ ; . Let Ã[1�:& �65 &·7 5:9:9:9 � be the training set of parse trees andL ¢� 5:9:9:9�5 L ¢¡�Ä be the labels of non-terminal nodes in&·¢ . Like the derivations of the EM algorithms for
other latent variable models, the update formulas for
the parameters, which update the parameters from Â
to Â�Å�1Æ3 G Å 5 @·Å ; , are obtained by constrained opti-
mization of ÇT3RÂ Å v Â ; , which is defined as

ÇT3RÂ Å v Â ; 1 o¬ Ä rÉÈ o® Ä r�s ± Ä
=�Ê 3R) ¢ v & ¢�;�ËÍÌ�Î =�Ê]Ï 3>& ¢ ' ) ¢ * ;g5

where
=�Ê

and
=�Ê Ï

denote probabilities under Â andÂ Å , and
= 3R)�v & ; is the conditional probability of la-

tent annotation symbols given an observed tree & ,
i.e.,

= 3R)�v & ; 1 = 3>&-' )?* ;EÐ = 3>& ; . Using the La-
grange multiplier method and re-arranging the re-
sults using the backward and forward probabilities,
we obtain the update formulas in Figure 2.

3 Parsing with PCFG-LA

In theory, we can use PCFG-LAs to parse a given
sentence � by selecting the most probable parse:

&·ÑÓÒ]Ô�Õ¨1AÖ�× Î�Ø ÖÉÙ¬ r�Ú¨ÛÝÜmÞ = 3>&-v � ; 1AÖ�× Î�Ø ÖÉÙ¬ r�Ú¨ÛßÜ·Þ = 3>& ;g5 (4)

where àT3�� ; denotes the set of possible parses for� under the observable grammar � . While the opti-
mization problem in Eq. 4 can be efficiently solved
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Figure 2: Parameter update formulas.

for PCFGs using dynamic programming algorithms,
the sum-of-products form of

= 3>& ; in PCFG-LA
models (see Eq. 2 and Eq. 3) makes it difficult to
apply such techniques to solve Eq. 4.

Actually, the optimization problem in Eq. 4 is NP-
hard for general PCFG-LA models. Although we
omit the details, we can prove the NP-hardness by
observing that a stochastic tree substitution grammar
(STSG) can be represented by a PCFG-LA model in
a similar way to one described by Goodman (1996a),
and then using the NP-hardness of STSG parsing
(Simaán, 2002).

The difficulty of the exact optimization in Eq. 4
forces us to use some approximations of it. The rest
of this section describes three different approxima-
tions, which are empirically compared in the next
section. The first method simply limits the number
of candidate parse trees compared in Eq. 4; we first
create N-best parses using a PCFG and then, within
the N-best parses, select the one with the highest
probability in terms of the PCFG-LA. The other two
methods are a little more complicated, and we ex-
plain them in separate subsections.

3.1 Approximation by Viterbi complete trees

The second approximation method selects the best
complete tree & Å ' ) Å * , that is,

& Å ' ) Å *·1 Ö�× Î�Ø ÖÉÙ¬ r�Ú¨ÛÝÜmÞ » ® r�s�� ª � = 3>&(' )+* ;g9 (5)

We call & ÅÓ' )+ÅÝ* a Viterbi complete tree. Such a tree
can be obtained in �T3tv ��v U ; time by regarding the
PCFG-LA as a PCFG with annotated symbols.1

The observable part of the Viterbi complete
tree &þÅÓ' )eÅß* (i.e., & Å ) does not necessarily coin-
cide with the best observable tree &¨ÑÓÒ]ÔCÕ in Eq. 4.
However, if &mÑÓÒ]Ô�Õ has some ‘dominant’ assign-
ment � to its latent annotation symbols such
that

= 3>&mÑÓÒ]ÔCÕt' ��* ; � = 3>&mÑÓÒ�Ô�Õ ; , then
= 3>& Å ;!�= 3>&mÑÓÒ�Ô�Õ ; because

= 3>&mÑÓÒ]ÔCÕt' �_* ; � = 3>&þÅÓ' )eÅÝ* ; and= 3>& Å ' ) Å * ; � = 3>& Å ; , and thus & Å and &mÑÓÒ]Ô�Õ are al-
most equally ‘good’ in terms of their marginal prob-
abilities.

3.2 Viterbi parse in approximate distribution

In the third method, we approximate the true dis-
tribution

= 3>&-v � ; by a cruder distribution ÇT3>&�v � ; ,
and then find the tree with the highest Ç?3>&-v � ; in
polynomial time. We first create a packed repre-
sentation of àT3�� ; for a given sentence � .2 Then,
the approximate distribution ÇT3>&�v � ; is created us-
ing the packed forest, and the parameters in ÇT3>&-v � ;
are adjusted so that ÇT3>&-v � ; approximates

= 3>&-v � ;
as closely as possible. The form of ÇT3>&�v � ; is that
of a product of the parameters, just like the form of
a PCFG model, and it enables us to use a Viterbi al-
gorithm to select the tree with the highest ÇT3>&�v � ; .

A packed forest is defined as a tuple
}
" 5$#É� . The

first component,
"
, is a multiset of chart items of the

form 3R, 5 ³ 5 ^ ; . A chart item 3R, 5 ³ 5 ^ ; � " indicates
that there exists a parse tree in à�3�� ; that contains a
constituent with the non-terminal label , that spans

1For efficiency, we did not actually parse sentences with%�� &��
but selected a Viterbi complete tree from a packed rep-

resentation of candidate parses in the experiments in Section 4.
2In practice, fully constructing a packed representation of' â ��ë

has an unrealistically high cost for most input sentences.
Alternatively, we can use a packed representation of a subset
of
' â ��ë

, which can be obtained by parsing with beam thresh-
olding, for instance. An approximate distribution (

â �)� ��ë
on

such subsets can be derived in almost the same way as one for
the full

' â ��ë
, but the conditional distribution,

� â �*� � ë
, is re-

normalized so that the total mass for the subset sums to 1.
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Figure 3: Two parse trees and packed representation
of them.

from the ³ -th to ^ -th word in � . The second compo-
nent, # , is a function on

"
that represents dominance

relations among the chart items in
"
; # 3�k ; is a set of

possible daughters of k if k is not a pre-terminal node,
and # 3�k ; 12�6�þ½�� if k is a pre-terminal node above��½ . Two parse trees for a sentence � 1 � � ��7K��U
and a packed representation of them are shown in
Figure 3.

We require that each tree &M��à�3�� ; has a unique
representation as a set of connected chart items in"

. A packed representation satisfying the uniqueness
condition is created using the CKY algorithm with
the observable grammar � , for instance.

The approximate distribution, ÇT3>&-v � ; , is defined
as a PCFG, whose CFG rules � Ü is defined as� Ü 1 ��3�k�J : ; vIk-� " � : � # 3�k ; � . We use ;�3�j ;
to denote the rule probability of rule j � � Ü and
; ¥ 3�k ; to denote the probability with which k-� " is
generated as a root node. We define Ç?3>&-v � ; as

ÇT3>&-v � ; 1<; ¥ 3�k �K; ¡¤½6= � ;�3�k�½ J>:�½ ;g5
where the set of connected items �6k �65:9:9:9�5 kC¡��@? "
is the unique representation of & .

To measure the closeness of approximation byÇT3>&�v � ; , we use the ‘inclusive’ KL-divergence,A�B 3 = vÍv Ç ; (Frey et al., 2000):

A�B 3 = vÍv Ç ; 1 o¬ r�Ú¨ÛÝÜmÞ
= 3>&�v � ;�ËÍÌ�Î = 3>&-v � ;ÇT3>&-v � ; 9

Minimizing
A�B 3 = vÍv Ç ; under the normalization

constraints on ; ¥ and ; yields closed form solutions
for ; ¥ and ; , as shown in Figure 4.=

in and
=

out in Figure 4 are similar to ordinary in-
side/outside probabilities. We define

=
in as follows:

µ If k�1 3R, 5 ¹ 5 ¹ ; � " is a pre-terminal node
above �þ½ , then

=
in 3�kg' .Y* ; 1 G 3R,-' ./*IJ���½ ; .

µ Otherwise,

=
in 3�kg' .Y* ; 1 o¶ ½ rDC{Û ¢ Þ oE�» F r�s

G 3R,-' ./*KJ � ¶�' � *���½�' ��* ;F = in 3Í¸8' � * ; = in 3Ó¹m' ��* ;g5
where � ¶ and ��½ denote non-terminal symbols
of chart items ¸ and ¹ .

The outside probability,
=

out, is calculated using
=

in

and PCFG-LA parameters along the packed struc-
ture, like the outside probabilities for PCFGs.

Once we have computed ;�3�kmJG: ; and ; ¥ 3�k ; , the
parse tree & that maximizes ÇT3>&-v � ; is found using
a Viterbi algorithm, as in PCFG parsing.

Several parsing algorithms that also use inside-
outside calculation on packed chart have been pro-
posed (Goodman, 1996b; Simaán, 2003; Clark and
Curran, 2004). Those algorithms optimize some
evaluation metric of parse trees other than the pos-
terior probability

= 3>&-v � ; , e.g., (expected) labeled
constituent recall or (expected) recall rate of depen-
dency relations contained in a parse. It is in contrast
with our approach where (approximated) posterior
probability is optimized.

4 Experiments

We conducted four sets of experiments. In the first
set of experiments, the degree of dependency of
trained models on initialization was examined be-
cause EM-style algorithms yield different results
with different initial values of parameters. In the
second set of experiments, we examined the rela-
tionship between model types and their parsing per-
formances. In the third set of experiments, we com-
pared the three parsing methods described in the pre-
vious section. Finally, we show the result of a pars-
ing experiment using the standard test set.

We used sections 2 through 20 of the Penn WSJ
corpus as training data and section 21 as heldout
data. The heldout data was used for early stop-
ping; i.e., the estimation was stopped when the rate
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of increase in the likelihood of the heldout data be-
came lower than a certain threshold. Section 22 was
used as test data in all parsing experiments except
in the final one, in which section 23 was used. We
stripped off all function tags and eliminated empty
nodes in the training and heldout data, but any other
pre-processing, such as comma raising or base-NP
marking (Collins, 1999), was not done except for
binarizations.

4.1 Dependency on initial values

To see the degree of dependency of trained mod-
els on initializations, four instances of the same
model were trained with different initial values of
parameters.3 The model used in this experiment was
created by CENTER-PARENT binarization and v 0wv
was set to 16. Table 1 lists training/heldout data log-
likelihood per sentence (LL) for the four instances
and their parsing performances on the test set (sec-
tion 22). The parsing performances were obtained
using the approximate distribution method in Sec-
tion 3.2. Different initial values were shown to affect
the results of training to some extent (Table 1).

3The initial value for an annotated rule probability,á âäã � �É�	å ç�� è6�ßé�� êg�ßë
, was created by randomly multiplying

the maximum likelihood estimation of the corresponding PCFG
rule probability,

� âäã åiç�éQë
, as follows:

á âäã � �É��åiç�� è:� é�� êg�ßëYì_íQî �ï�^._ � âäã åiç�éQë 	
where ` is a random number that is uniformly distributed in�badcfe4g 17	 cfe0g 1 � and

í ï is a normalization constant.

1 2 3 4 average hji
training LL -115 -114 -115 -114 -114 h 0.41
heldout LL -114 -115 -115 -114 -114 h 0.29

LR 86.7 86.3 86.3 87.0 86.6 h 0.27
LP 86.2 85.6 85.5 86.6 86.0 h 0.48

Table 1: Dependency on initial values.
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Figure 6: Four types of binarization (H: head daugh-
ter).

4.2 Model types and parsing performance

We compared four types of binarization. The orig-
inal form is depicted in Figure 5 and the results are
shown in Figure 6. In the first two methods, called
CENTER-PARENT and CENTER-HEAD, the head-
finding rules of Collins (1999) were used. We ob-
tained an observable grammar � for each model by
reading off grammar rules from the binarized train-
ing trees. For each binarization method, PCFG-LA
models with different numbers of latent annotation
symbols, v 0wv�1M� 5$s�5ut�5$v , and �3w , were trained.
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The relationships between the number of param-
eters in the models and their parsing performances
are shown in Figure 7. Note that models created
using different binarization methods have different
numbers of parameters for the same v 0wv . The pars-
ing performances were measured using F � scores of
the parse trees that were obtained by re-ranking of
1000-best parses by a PCFG.

We can see that the parsing performance gets bet-
ter as the model size increases. We can also see that
models of roughly the same size yield similar perfor-
mances regardless of the binarization scheme used
for them, except the models created using LEFT bi-
narization with small numbers of parameters ( v 0Wvc1� and s ). Taking into account the dependency on ini-
tial values at the level shown in the previous exper-
iment, we cannot say that any single model is supe-
rior to the other models when the sizes of the models
are large enough.

The results shown in Figure 7 suggest that we
could further improve parsing performance by in-
creasing the model size. However, both the memory
size and the training time are more than linear in v 0wv ,
and the training time for the largest ( v 0wv�1[�3w ) mod-
els was about 15 hours for the models created us-
ing CENTER-PARENT, CENTER-HEAD, and LEFT
and about 20 hours for the model created using
RIGHT. To deal with larger (e.g., v 0wv = 32 or 64)
models, we therefore need to use a model search that
reduces the number of parameters while maintaining
the model’s performance, and an approximation dur-
ing training to reduce the training time.
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Figure 8: Comparison of parsing methods.

4.3 Comparison of parsing methods

The relationships between the average parse time
and parsing performance using the three parsing
methods described in Section 3 are shown in Fig-
ure 8. A model created using CENTER-PARENT
with v 0Wvc1[�3w was used throughout this experiment.

The data points were made by varying config-
urable parameters of each method, which control the
number of candidate parses. To create the candi-
date parses, we first parsed input sentences using a
PCFG4, using beam thresholding with beam widthx . The data points on a line in the figure were cre-
ated by varying x with other parameters fixed. The
first method re-ranked the L -best parses enumerated
from the chart after the PCFG parsing. The two lines
for the first method in the figure correspond to L
= 100 and L = 300. In the second and the third
methods, we removed all the dominance relations
among chart items that did not contribute to any
parses whose PCFG-scores were higher than y = max,
where

=
max is the PCFG-score of the best parse in

the chart. The parses remaining in the chart were the
candidate parses for the second and the third meth-
ods. The different lines for the second and the third
methods correspond to different values of y .

The third method outperforms the other two meth-
ods unless the parse time is very limited (i.e., z 1

4The PCFG used in creating the candidate parses is roughly
the same as the one that Klein and Manning (2003) call a
‘markovised PCFG with vertical order = 2 and horizontal or-
der = 1’ and was extracted from Section 02-20. The PCFG itself
gave a performance of 79.6/78.5 LP/LR on the development set.
This PCFG was also used in the experiment in Section 4.4.



{
40 words LR LP CB 0 CB

This paper 86.7 86.6 1.19 61.1
Klein and Manning (2003) 85.7 86.9 1.10 60.3

Collins (1999) 88.5 88.7 0.92 66.7
Charniak (1999) 90.1 90.1 0.74 70.1{

100 words LR LP CB 0 CB
This paper 86.0 86.1 1.39 58.3

Klein and Manning (2003) 85.1 86.3 1.31 57.2
Collins (1999) 88.1 88.3 1.06 64.0

Charniak (1999) 89.6 89.5 0.88 67.6

Table 2: Comparison with other parsers.

sec is required), as shown in the figure. The superi-
ority of the third method over the first method seems
to stem from the difference in the number of can-
didate parses from which the outputs are selected.5

The superiority of the third method over the second
method is a natural consequence of the consistent
use of

= 3>& ; both in the estimation (as the objective
function) and in the parsing (as the score of a parse).

4.4 Comparison with related work

Parsing performance on section 23 of the WSJ cor-
pus using a PCFG-LA model is shown in Table 2.
We used the instance of the four compared in the
second experiment that gave the best results on the
development set. Several previously reported results
on the same test set are also listed in Table 2.

Our result is lower than the state-of-the-art lex-
icalized PCFG parsers (Collins, 1999; Charniak,
1999), but comparable to the unlexicalized PCFG
parser of Klein and Manning (2003). Klein and
Manning’s PCFG is annotated by many linguisti-
cally motivated features that they found using ex-
tensive manual feature selection. In contrast, our
method induces all parameters automatically, except
that manually written head-rules are used in bina-
rization. Thus, our method can extract a consider-
able amount of hidden regularity from parsed cor-
pora. However, our result is worse than the lexical-
ized parsers despite the fact that our model has ac-
cess to words in the sentences. It suggests that cer-
tain types of information used in those lexicalized

5Actually, the number of parses contained in the packed for-
est is more than 1 million for over half of the test sentences
when | = /u} î  and ` ì /u} î � , while the number of parses for
which the first method can compute the exact probability in a
comparable time (around 4 sec) is only about 300.

parsers are hard to be learned by our approach.
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