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Abstract

This paper presents techniques to apply
semi-CRFs to Named Entity Recognition
tasks with a tractable computational cost.
Our framework can handle an NER task
that has long named entities and many
labels which increase the computational
cost. To reduce the computational cost,
we propose two techniques: the first is the
use of feature forests, which enables us to
pack feature-equivalent states, and the sec-
ond is the introduction of a filtering pro-
cess which significantly reduces the num-
ber of candidate states. This framework
allows us to use a rich set of features ex-
tracted from the chunk-based representa-
tion that can capture informative charac-
teristics of entities. We also introduce a
simple trick to transfer information about
distant entities by embedding label infor-
mation into non-entity labels. Experimen-
tal results show that our model achieves an
F-score of 71.48% on the JNLPBA 2004
shared task without using any external re-
sources or post-processing technigues.

Introduction

}@is.s.u-tokyo.ac.jp

Bio-NER in COLING 2004 JNLPBA (Kim et al.,
2004) was 72.55% (Zhou and Su, 20b4yhereas

the best performance at MUC-6, in which systems
tried to identify general named entities such as
person or organization names, was an accuracy of
95% (Sundheim, 1995).

Many of the previous studies of Bio-NER tasks
have been based on machine learning techniques
including Hidden Markov Models (HMMs) (Bikel
et al., 1997), the dictionary HMM model (Kou et
al., 2005) and Maximum Entropy Markov Mod-
els (MEMMs) (Finkel et al., 2004). Among these
methods, conditional random fields (CRFs) (Laf-
ferty et al., 2001) have achieved good results (Kim
et al., 2005; Settles, 2004), presumably because
they are free from the so-called label bias problem
by using a global normalization.

Sarawagi and Cohen (2004) have recently in-
troduced semi-Markov conditional random fields
(semi-CRFs). They are defined on semi-Markov
chains and attach labels to the subsequences of a
sentence, rather than to the tok&nsThe semi-
Markov formulation allows one to easily construct
entity-level features. Since the features can cap-
ture all the characteristics of a subsequence, we
can use, for example, a dictionary feature which
measures the similarity between a candidate seg-
ment and the closest element in the dictionary.

The rapid increase of information in the biomedi-Kou et al. (2005) have recently showed that semi-
cal domain has emphasized the need for automatéeRFs perform better than CRFs in the task of
information extraction techniques. In this papere€cognition of protein entities.

we focus on the Named Entity Recognition (NER) The main difficulty of applying semi-CRFs to
task, which is the first step in tackling more com-Bio-NER lies in the computational cost at training

plex tasks such as relation extraction and knowl-

edge mining.

Biomedical NER (Bio-NER) tasks are, in gen-
eral, more difficult than ones in the news domain.

IKrauthammer (2004) reported that the inter-annotator
agreement rate of human experts was 77.6% for bio-NLP,
which suggests that the upper bound of the F-score in a Bio-
NER task may be around 80%.

2Assuming that non-entity words are placed in unit-length

For example, the best F-score in the shared task ekgments.



set of features. CRFs allow both discriminative
training and bi-directional flow of probabilistic in-
formation along the sequence. In NER, we of-

Table 1: Length distribution of entities in the train-
ing set of the shared task in 2004 JNLPBA

Length | # entity  Ratio ten use linear-chain CRFs, which define the con-
1| 21646 42.19 ditional probability of a state sequenge vy, ...,
2| 15442 30.10 yn given the observed sequence z1,...z, by:
3 7530 14.68
4 3505 6.83 p(y|xa )‘) = meXp(E?ZIEj)\jfj(yiflvy’ivxvi>)a
5 1379 2.69 X 1
6 732 1.43 N . (1)
- 409 0.80 wherg fj(yi,l,yi,x_, i) is a feature function and
8 252 0.49 Z(x) is the normalization factor over all the state
' sequences for the sequencerhe model parame-
>8 406 0.79 N t of real-valued weidhts { )\ h
total | 51301 100.00 ers are a set of real-valued weights {); }, eac

of which represents the weight of a feature. All the
feature functions are real-valued and can use adja-

b h ber of d entity cl gent label information.
ecause the number of named entity classes endsge i crEs are actually a restricted version of

to be large, and the training data typically Containordequ CRFsinwhich all the labels in a chunk are

many long entities, which makes it difficult to enu- the same. We follow the definitions in (Sarawagi
merate all the entity candidates in training. Tableand Cohen, 2004). Let = (s, s,) denote a
1 . - 90y 9P

1 s_hpws the Iferrl]gth :Is”(lijtIO;'Of entities in thesegmentation of x, where a segment= (t;, u;,
training set of the shared task in 2004 JNLPBA.yj> consists of a start positioh), an end position

Formally, the computational cost of training semi-u, and alabelj;. We assume that segments have a
) , vk j
CRFs 'SO(K_;N)’ \_/vhereL s the upper bound positive length bounded above by the pre-defined
length of entities NV is the length of sentence and upper boundl. (t; < u;, u; —t; + 1 < L) and
K is the size of label set. And that of training in . o1ete)y cover the sje’:quenm{rvithou?overlap-
first order semi-CRFs i©®(K?LN). The increase ping, that is,s satisfiest; — 1, u, = |x|, and
of the cost is used to transfer non-adjacent entit¥-+1 T w +’1 forj = 1,..p B 1p Semi-,CRFs
. : 1 = Uy =1,.., :
|nformat|on. N _ define a conditional probability of a state sequence
To improve the scalability of semi-CRFs, we y given an observed sequencby:

propose two techniques: the first is to intro-
duce a filtering process that significantly re- X \) = 1 exD(S S\ f (5 2
duces the number of candidate entities by using (vl A) Z(x) p(EEAifils)), ()
a “lightweight” classifier, and the second is to .

. ' . Wherefi(sj) = fi(yj_l,yj,x,tj,uj) is a fea-
usefeature fores(Miyao and Tsuji, 2002), with ture function andZ (x) is the normalization factor

which we pack the feature equivalent states. ThesgS defined for CRFs. The inference problem for

enable us to construct semi-CRF models for the = . . .
. Semi-CRFs can be solved by using a semi-Markov
tasks where entity names may be long and man

: ; I f th | Viterbi algorithm. Th -
class-labels exist at the same time. We also preseépa 09 0 the usua |t_erb| aigorithm € com
an extended version of semi-CRFs in which Weputatlonal costfor semi-CRFs &3(K LN) where
._L is the upper bound length of entitied] is the

e . L gfength of sentence anH is the number of label
named entity in defining features within the frame- . . )
set. If we use previous label information, the cost

yvork of flr_st order seml-C_RFs._ Since the preced'PecomesO(K%N).
ing entity is not necessarily adjacent to the curren

entity, we achieve this by embedding the informa-3  Using Non-Local Information in
tion on preceding labels for named entities intothe  Semi-CRFs

labels for non-named entities. ) _
In conventional CRFs and semi-CRFs, one can

2 CRFs and Semi-CRFs only use the information on the adjacent previ-

ous label when defining the features on a certain
CRFs are undirected graphical models that encodgtate or entity. In NER tasks, however, informa-
a conditional probability distribution using a given tion about a distant entity is often more useful than



for propagating non-local information in advance.
In a recent study by Finkel et al., (2005), non-
local information is encoded using an indepen-
dence model, and the inference is performed by
O-protein—0-protein Gibbs sampling, which enables us to use a state-
of-the-art factored model and carry out training ef-
ficiently, but inference still incurs a considerable
computational cost. Since our model handles lim-
ited type of non-local information, i.e. the label

of the preceding entity, the model can be solved

information about the previous state (Finkel et aI.,W'thOUt approximation.

2005). For example, consider the sentenceifi-
cluding Sp1 and CP1where the correct labels of
“SpT and “CPT’ are both ‘protein”. It would be  The straightforward implementation of this mod-
useful if the model could utilize the (non-adjacent)eling in semi-CRFs often results in a prohibitive
information about SpT being “protein” to clas-  computational cost.
sify “CPI" as “protein”. On the other hand, in-  |n hjomedical documents, there are quite a few
formation about adjacent labels does not necessagntity names which consist of many words (names
ily provide useful information because, in many of 8 words in length are not rare). This makes
cases, the previous label of a named entityds,“ it difficult for us to use semi-CRFs for biomedi-
which indicates a non-named entity. For 98.0% ofza] NER, because we have to geto be eight or
the named entities in the training data of the shareqirger, wherel is the upper bound of the length of
task in the 2004 JNLPBA, the label of the preced-possible chunks in semi-CRFs. Moreover, in or-
ing entity was ‘O”. der to take into account the dependency between
In order to incorporate such non-local informa-named entities of different classes appearing in a
tion into semi-CRFs, we take a simple approachsentence, we need to incorporate multiple labels
We divide the label of ©” into “O-protein” and  into a single probabilistic model. For example, in
“O" so that they convey the information on the the shared task in COLING 2004 JNLPBA (Kim
preceding named entity. Figure 1 shows an exet al., 2004) the number of labels is sixp(o-
ample of this conversion, in which the two labelstein”, “DNA”, “RNA”, “cell_line”, “cell_type”
for the third and fourth states are converted fromand ‘other”). This also increases the computa-
“O" to “O-protein”. When we define the fea- tional cost of a semi-CRF model.
tures for the fifth state, we can use the informa- To reduce the computational cost, we propose
tion on the preceding entityptotein” by look-  two methods (see Figure 2). The first is employing
ing at the fourth state. Since this modificationa filtering process using a lightweight classifier to
changes only the label set, we can do this withiremove unnecessary state candidates beforehand
the framework of semi-CRF models. This idea is(Figure 2 (2)), and the second is the using fibe-
originally proposed in (Peshkin and Pfeffer, 2003).ture forest mode{Miyao and Tsuijii, 2002) (Fig-
However, they used a dynamic Bayesian networlure 2 (3)), which employs dynamic programming
(DBNSs) rather than a semi-CRF, and semi-CRFat training ‘as much as possible

are likely to have significantly better performance
than DBNSs. 4.1 Filtering with a naive Bayes classifier

mentation of long distance effects to the model.
However, they need to determine the structure

Figure 1: Modification of ©O” (other labels) to
transfer information on a preceding named entity.

4 Reduction of Training/Inference Cost

In previous work, such non-local information We introduce a filtering process to remove low
has usually been employed at a post-processingrobability candidate states. This is the first step
stage. This is because the use of long distancef our NER system. After this filtering step, we
dependency violates the locality of the model andcconstruct semi-CRFs on the remaining candidate
prevents us from using dynamic programmingstates using a feature forest. Therefore the aim of
techniques in training and inference. Skip-CRFghis filtering is to reduce the number of candidate
(Sutton and McCallum, 2004) are a direct imple-states, without removing correct entities. This idea



(O :other O :entity (© : other with preceding entity information

000000
S S
5 5
(1) Enumerate (2) Filtering by  (3) Construct feature forest
Candidate States ~ Naive Bayes

Figure 2: The framework of our system. We first enumerate all possible candidate states, and then filter
out low probability states by using a light-weight classifier, and represent them by using feature forest.

Table 2: Features used in the naive Bayes Classi- 2% i i+1
fier for the entity candidatew,, w1, ..., We. Sp; ote cotel
is the result of shallow parsing at.
Feature Name Example of Features @ @
Start/End Word| ws, w, NG NG

Inside Word | ws, wsy1, ... ,We
Context Word| ws_1, We+1 @ @

Start/End SP sps, spe D : or node (disjunctive node)
Inside SP| sps, SPst1y -y SDe

Context SP| sps_1, Spe+1 Q : and node (conjunctive node)

Figure 3. Example of feature forest representation

is similar to the method proposed by Tsuruoka andf linear chain CRFs. Feature functions are as-
Tsuijii (2005) for chunk parsing, in which implau- signed to “and” nodes.
sible phrase candidates are removed beforehand.

We construct a binary naive Bayes classifier us- o5 7 8 9
ing the same training data as those for semi-CRFs: . , >
In training and inference, we enumerate all possi- /
ble chunks (the max length of a chunklisas for . =8 |
semi-CRFs) and then classify those into “entity” prev-entity:protein |
or “other”. Table 2 lists the features used in the '
naive Bayes classifier. This process can be per-
formed independently of semi-CRFs

Since the purpose of the filtering is to reduce the
computational cost, rather than to achieve a good

F-score by itself, we chose the threshold probabil-_. ) .
. o o Figure 4: Example of packed representation of
ity of filtering so that the recall of filtering results

semi-CRFs. The states that have the same end po-
would be near 100. o )
sition and prev-entity label are packed.

i ‘: prev-entity: protein

________________ [
'

4.2 Feature Forest

In estimating semi-CRFs, we can use an efficientode| which was originally proposed for disam-
dynamic programming algorithm, which is simi- biguation models for parsing (Miyao and Tsuijii,
lar to the forward-backward algorithm (Sarawagi2002). A feature forest model is a maximum en-
and Cohen, 2004). The proposal here is a moréropy model defined ovdeature forestswhich are
general framework for estimating sequential con-abstract representations of an exponential number
ditional random fields. of sequence/tree structures. A feature forest is
This framework is based othe feature forest an “and/or” graph: in Figure 3, circles represent



“and” nodes ¢onjunctivenodes), while boxes de- half of the original one.
note “or” nodes disjunctivenodes). Feature func- )

tions are assigned to “and” nodes. We can us@ EXperiments

the information of the previous “and” node forde-5 1 Experimental Setting

signing the feature functions through the previous . -
gning g P Our experiments were performed on the training

“or” node. Each sequence in a feature forest is . ' ;
d and evaluation set provided by the shared task in

tai hoosi juncti f .
obtained by choosing a conjunctive node for eaclt, . |\ ~">004 331 pRA (Kim et al., 2004). The
disjunctive node. For example, Figure 3 represents

3 x 3 = 9 sequences, since each disjunctive nOdéralnlng data used in this shared task came from

has three candidates. It should be noted that featthre (E\IIENIA r\1/1errs1;i0n|3't?2| corr;iu;]. Ir|13|t\TAe taRst;here
ture forests can represent an exponential numbdy ¢ V€ semantic fabeisprotein, ’ '

of sequences with a polynomial number of Con_ceILIine andcell_type. The training set consists
junctive/disjunctive nodes. of 2000 abstracts from MEDLINE, and the evalu-

ation set consists of 404 abstracts. We divided the

One can estimate a maximum entropy model {0k, igina| training set into 1800 abstracts and 200
the whole sequence with dynamic programming,pgiracts, and the former was used as the training
by representing the probabilistic events, i.e. Seyata and the latter as the development data. For
quence of named entity tags, by feature forestggmi crFs, we useamis® for training the semi-
(Miyao and Tsuijii, 2002). CRF with feature-forest. We us@ENIA taggaf

In the previous work (Lafferty et al., 2001; for POS-tagging and shallow parsing.

Sarawagi and Cohen, 2004), “or” nodes are con- \We setZ = 10 for training and evaluation when
sidered implicitly in the dynamic programming we do not state. explicitly , whereL is the upper
framework. In feature forest models, “or” nodesbound of the length of possible chunks in semi-
are packed when they have same conditions. FQrRFs.

example, “or” nodes are packed when they have

same end positions and same labels in the first oR-2 Features

der semi-CRFs, Table 3 lists the features used in our semi-CRFs.

In general, we can pack different “or” nodes thatWe describe the chunk-dependent features in de-
yield equivalent feature functions in the follow- tail, which cannot be encoded in token-level fea-
ing nodes. In other words, “or” nodes are packedures.
when the following states use partial information “Whole chunk” is the normalized names at-
on the preceding states. Consider the task of tagached to a chunk, which performs like the closed
ging entityandO-entity, where the latter tag is ac- dictionary. ‘Length” and “Length and End-
tually O tags that distinguish the preceding named/Vord” capture the tendency of the length of a
entity tags. When we simply apply first-order named entity. Count feature” captures the ten-
semi-CRFs, we must distinguish states that havelency for named entities to appear repeatedly in
different previous states. However, when we wanthe same sentence.
to distinguish only the preceding named entity tags “Preceding Entity and Prev Word” are fea-
rather than the immediate previous states, featuriélres that capture specifically words for conjunc-
forests can represent these events more compacfipns such as&nd’ or “, (comma)”, e.g., for the
(Figure 4). We can implement this as follows. Inphrase OCIM1 and K562, both “OCIM1" and
each “or” node, we generate the following “and” “K562" are assignedcell_line labels. Even if
nodes and their feature functions. Then we checkle model can determine only tha®DCIMY1" is a
whether there exist “or” node which has same concell-line , this feature helpsk562’ to be assigned
ditions by using its information about “end posi- the labelcell_line.

‘t‘ion”"and “previous entity”. If.so,“vve" connect the 53 Results
and” node to the corresponding “or” node. If not,

cess. 4 shows the result of the filtering on the training

Since the states with lab@-entity and entity *http:/www-tsujiiis. s.u-tokyo.ac.jp/amis/

ked. th tati | t of traini . http://www-tsujii.is.s.u-tokyo.ac.jp/GENIA/tagger/
are packed, the computational Cost Ot trainiNg IMste that the evaluation data are not used for training the GE-

our model (First order semi-CRFs) becomes theulA tagger.



Table 3: Feature templates used for the chsirkw; wg. 1 ... we. Wherew, andw, represent the words
at the beginning and ending of the target chunk respectipelg the part of speech tag af; andsc; is
the shallow parse result af;.

Feature Name \ description of features

Non-Chunk Features
Word/POS/SC with Position BEGIN +w,, END +we, IN + way1, ..., IN +we_1, BEGIN +ps,...
Context Uni-gram/Bi-gram Ws—1, Wet1, Ws—2 + Ws—1, Wetr1 + Wet2, Ws—1 + Wet1
Prefix/Suffix of Chunk 2/3-gram character prefix af,, 2/3/4-gram character suffix af.
Orthography capitalization and word formation af...w.

Chunk Features

Whole chunk Ws + Wep1 F ... FWe
Word/POS/SC End Bi-grams We—1 * We, Pe—1 + Pey SCe—1 + SCe
Length, Length and End Word Is|, |s|+we
Count Feature the frequency ofv,ws+1..we in @ sentence is greater than one

Preceding Entity Features
Preceding Entity /and Prev Word \ PrevState, PrevState + ws_1

information and non-local information on final

Table 4: Filtering results using the naive Bayes erformance. Table 6 shows the performance re-
classifier. The number of entity candidates for the” ' P

o sult for the recognition task.Z means the upper
training set wad 179662, and that of the develop- bound of the Ier?gth of possible chunks inps%mi-

ment set was18628. _ CRFs. We note that we cannot examine the re-
Training set _ sult of L = 10 without filtering because of the in-
Threshold probability || reduction ratio) recall tractable computational cost. The row “w/o Chunk
1.0 x 1072 0.1410.984 Feature” shows the result of the system which does
1.0 x 107" 0.20| 0.993 not employ Chunk-Features in Table 3 at training
Development set and inference. The row “Preceding Entity” shows
Threshold probability | reduction ratio| recall the result of a system which usBseceding En-
1.0 x 107" 0.14| 0.985 tity and Preceding Entity and Prev Word fea-
1.0 x 1071 0.20] 0.994 tures. The results indicate that the chunk features

contributed to the performance, and the filtering

process enables us to use full chunk representation
and evaluation data. The naive Bayes classifierg, — 10). The results of McNemar’s test suggest
effectively reduced the number of candidate stateat the system with chunk features is significantly
with very few falsely removed correct entities.  petter than the system without it (the p-value is

We then examined the effect of filtering on the|ess thari.0 < 10~4). The result of the preceding

final performance. In this experiment, we couldentity information improves the performance. On
not examine the performance without filtering us-the other hand, the system with preceding infor-
ing all the training data, because training on allmation is not significantly better than the system
the training data without filtering required much without it>. Other non-local information may im-
larger memory resources (estimated to be abolgrove performance with our framework and this is
80G Byte) than was possible for our experimentah topic for future work.
setup. We thus compared the result of the recog- Table 7 shows the result of the overall perfor-
nizers with and without filtering using only 2000 mance in our best Setting, which uses the infor-
sentences as the training data. Table 5 shows thfiation about the preceding entity ahé x 10~1°
result of the total system with different filtering threshold probability for filtering. We note that the

thresholds. The result indicates that the filteringresult of our system is similar to those of other sys-
method achieved very well without decreasing the—; - _
The result of the classifier on development datadi$4

overall performance. o (without preceding information) and5.14 (with preceding
We next evaluate the effect of filtering, chunk information).



Table 5: Performance with filtering on the development ddta. 1.0 x 10~'2) means the threshold

probability of the filtering isl.0 x 10712,

\ Recall Precision F-scorbMemory Usage (MB) Training Time (S)

Small Training Data = 2000 sentences
Without filtering 65.77 72.80 69.10 4238 7463
Filtering (< 1.0 x 10.07'%) | 64.22 70.62 67.27 600 1080
Filtering (< 1.0 x 10.07*°) | 65.34 72.52 68.74 870 2154

All Training Data = 16713 sentences
Without filtering Not available Not available
Filtering (< 1.0 x 10.07*%) | 70.05 76.06 72.93 10444 14661
Filtering (< 1.0 x 10.07%) | 72.09  78.47  75.14 15257 31636

Table 6: Overall performance on the evaluation &6t the upper bound of the length of possible chunks

in semi-CRFs.

Recall Precision

F-score

L <5

64.33

L =10 + Filtering (< 1.0 x 10.07%) | 70.87
L =10 + Filtering (< 1.0 x 10.071%) | 72.59

65.51 64.92
68.33 69.58
70.16 71.36

w/o Chunk Feature

70.53

69.92 70.22

+ Preceding Entity

72.65

70.35 71.48

tems in several respects, that is, the performance of

cell_line is not good, and the performance of the

right boundary identification78.91% in F-score)  Table 7: Performance of our system on the evalu-
is better than that of the left boundary identifica-ation set

tion (75.19% in F-score).

Table 8 shows a comparison between our sys-
tem and other state-of-the-art systems. Our sys-
tem has achieved a comparable performance to

these systems and would be still improved by us-

ing external resources or conducting pre/post pro-

cessing. For example, Zhou et. al (2004) used

post processing, abbreviation resolution and exter-

nal dictionary, and reported that they improved F-
score by3.1%, 2.1% and1.2% respectively. Kim

et. al (2005) used the original GENIA corpus
to employ the information about other semantic
classes for identifying term boundaries. Finkel

Class| Recall Precision F-scorg
protein | 77.74 68.92 73.07
DNA | 69.03 70.16 69.59
RNA | 69.49 67.21 68.33
cell_type | 65.33 82.19 72.80
cell_line | 57.60 53.14 55.28
overall | 72.65 70.35 71.48

Table 8: Comparison with other systems

System

Recall Precision F-scorg

et. al (2004) used gazetteers, web-querying, suf-

rounding abstracts, and frequency counts fron

the BNC corpus. Settles (2004) used seman-

tic domain knowledge of 17 types of lexicon.
Since our approach and the use of external re

Our system

1Zhou et. al (2004) | 75.99

72.65

Kim et.al (2005) | 72.77

_Finkel et. al (2004)| 68.56

Settles (2004) 70.3

69.42
70.35
69.68
71.62
69.3

72.55
71.48
71.19
70.06
69.8

sources/knowledge do not conflict but are com
plementary, examining the combination of those

techniques should be an interesting research topic.



6 Conclusion

In this paper, we have proposed a single proba-
bilistic model that can capture important charac-
teristics of biomedical named entities. To over-
come the prohibitive computational cost, we have
presented an efficient training framework and a fil-
tering method which enabled us to apply first or-

Micahel Krauthammer and Goran Nenadic.

Zhenzhen Kou, William W. Cohen, and Robert F. Mur-

phy. 2005. High-recall protein entity recognition
using a dictionaryBioinformatics 2005 21

2004.
Term identification in the biomedical literaturéor-
nal of Biomedical Informatics

John Lafferty, Andrew McCallum, and Fernando

Pereira. 2001. Conditional random fields: Prob-

der semi-CRF models to sentences having many apijistic models for segmenting and labeling se-

labels and entities with long names. Our results
showed that our filtering method works very well
without decreasing the overall performance. Our
system achieved an F-score of 71.48% without the

use of gazetteers, post-processing or external re- . o .
geshkln and Pfeffer. 2003. Bayesian information ex-

sources. The performance of our system cam
close to that of the current best performing system

Yusuke Miyao and Jun’ichi Tsujii. 2002. Maximum

quence data. IRroc. of ICML 2001

entropy estimation for feature forests. Mroc. of
HLT 2002

traction network. IHJCAL.

which makes extensive use of external resourceSunita Sarawagi and William W. Cohen. 2004. Semi-

and rule based post-processing.
The contribution of the non-local information

markov conditional random fields for information
extraction. INNIPS 2004

introduced by our method was not significant inBurr Settles. 2004. Biomedical named entity recogni-

the experiments. However, other types of non-
local information have also been shown to be ef-

tion using conditional random fields and rich feature
sets. InProc. of INLPBA-04

fective (Finkel et al., 2005) and we will examine Beth M. Sundheim. 1995. Overview of results of the

the effectiveness of other non-local information
which can be embedded into label information.

MUC-6 evaluation. InSixth Message Understand-
ing Conference (MUC-6)pages 13-32.

As the next stage of our research, we hope to ap=harles Sutton and Andrew McCallum. 2004. Collec-

ply our method to shallow parsing, in which seg-
ments tend to be long and non-local information is
important.

tive segmentation and labeling of distant entities in
information extraction. IHCML workshop on Sta-
tistical Relational Learning

Yoshimasa Tsuruoka and Jun’ichi Tsujii. 2005. Chunk
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