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Abstract

To recognize instances of medical infor-
mation concerning prostate cancer and
its relevant genes, we developed a ma-
chine learning-based relation recognizer
using rich contextual features. We col-
lected prostate cancer-related abstracts
from Medline. We then constructed an
annotated corpus of prostate cancer and
gene relations, which consisted of six
topic − classified categories, with more
detailed information describing the type
of prostate cancer and gene relation. The
corpus was made with the help of biolo-
gists and a disease and gene dictionary-
based name recognition technique. The
process of dictionary-based name recogni-
tion generates disease-gene pairs that be-
comecandidates for biomedically related
pairs. Since dictionary matching tends to
over-generate candidates, we used a ma-
chine learning-based named entity recog-
nition method (1) to provide a feature for
each candidate, and (2) to filter out over-
generated candidates.

Experimental results showed that using a
maximum entropy-based relation recog-
nition method and a maximum entropy-
based named entity recognition method to-
gether greatly improves precision at the

cost of a small reduction in recall for the
topic-classified relations.

1 Introduction

Bioinformatics is the application of computer
technology to the management and analysis of
biomedical data, in which computers are exten-
sively used to gather, store, analyze, and merge
it. Many natural language processing techniques
are used to extract and analyze useful information
from biomedical texts. Examples include recogni-
tion of biomedical named entities, such as genes,
proteins, cells, tissues and diseases, and extraction
of their interactions.

One of the most practical research topics of
bioinformatics deals with certain diseases and
their relevant genes or proteins. Such informa-
tion can help researchers such as medical doctors,
pharmacists, and biologists to do their work, in-
cluding diagnosis of disease and development of
medicines.

Rosario and Hearst attempted to classify seven
semantic relations between the entitiesdisease
and treatment using several machine learning
techniques which arehidden Markov models
andneural networks. The seven semantic rela-
tions werecure, only disease, only treatment,
prevent, vague, side effect andno cure. They
used the following features: the word itself, its
part-of-speech from the Brill tagger, the phrase
from which the word was extracted, the word’s



MeSH ID, a tri-valued attribute indicating whether
the word is a disease or a treatment or neither
(based on MeSH), and the word’s orthographic
characteristics (such as presence of capital let-
ters or numerical digits). There were 1,724 rel-
evant sentences and 3,495 irrelevant sentences,
which do not contain both treatment and disease,
used for training and testing. Using dynamic hid-
den Markov models, the authors achieved an F-
measure of 0.71. Their results and data show that
the most important features for relation classifi-
cation are the word itself and its MeSH-based at-
tributes (B. Rosario and M. Hearst, 2004).

Chen et al. proposed a method for collecting
Alzheimer’s disease-related proteins. There were
65 seed genes collected from the OMIM database
and mapped to 70 Alzheimer’s disease-related
proteins in HUGO and SwissProt databases. They
then show ranked 765 proteins which were col-
lected using protein interactions of the online pre-
dicted human interaction database (OPHID) (Chen
et al., 2006).

Chun et al. attempted to extract disease-gene re-
lations using dictionaries and a named entity filter-
ing technique. Their results show that maximum
entropy-based named entity filtering improves the
performance of disease-gene relations recognition.
However, there are two disadvantages using this
technique: only 1,000 co-occurrences (sentences)
are used for training and testing, and only one kind
of relation is considered (Chun et al., 2006).

We aim to recognize relations between prostate
cancer and its relevant genes fromMedline
abstracts. Most biomedical information ex-
traction approaches commonly collect only two
biomedical names as a binary relation in ac-
cordance with their close proximity. Thus, we
defined ourrelation with six points of view
for sentences that contain prostate cancer and
gene pairs. We call this approachtopic −
classified relation recognition. Moreover, nu-
merous previous studies have identified entities or
relations that are not grounded in any explicit ex-
ternal model of the world, but rather simply point
to substrings in the input text. Such outputs are
of intrinsically limited value. For example, a sys-
tem that produces a table of protein-protein inter-
actions is potentially highly valuable if it refers to
specific entities in public databases, but of much
more limited value if it lists only potentially am-
biguous symbols and names (PSB, 2006). Thus,

the output of our research includes the ID tags
that are used in six publicly available biological
databases: LocusLink, HUGO, SwissProt, Ref-
Seq, DDBJ and UMLS.

2 Topic-classified relation recognition

Figure 1 is an overview of topic-classified rela-
tion recognition. Our system first collects sen-
tences that contain at least one pair of disease and
gene names, using the dictionary-based longest
matching technique. We used a machine learning-
based named entity recognition method to provide
a feature for each candidate in a machine learning-
based topic-classified relation recognition method,
and to filter out numerous false positives. We also
used a machine learning-based relation recogni-
tion method to filter out a lot of false positives.

We have three types of false positives in the
dictionary-based results:

• False gene names

• False disease names

• False relations

The results of system then are the topic-
classified relations.

2.1 Construction of the gene and disease
dictionaries

To link each output entry to publicly available
biomedical databases, we created a human gene
dictionary and a disease dictionary by merging the
entries of multiple public biomedical databases.
These dictionaries provide gene- and disease-
related terms and cross-references between the
original databases.

2.1.1 The gene dictionary

A uniqueLocusLink identifier for genetic loci
is assigned to each entry in the gene dictionary,
which enabled us to consistently merge gene in-
formation dispersed in different databases. Each
entry in the merged gene dictionary holds all the
relevant literature information associated with a
given gene. We used five public databases to
build the gene dictionary:HUGO, LocusLink,
SwissProt, RefSeq, and DDBJ(July 2004).
Each entry consists of five items: gene name,
gene symbol, gene product, chromosomal band,
and PubMed ID tags. Based on these criteria,



Figure 1: The system architecture.

we created a database-merging system to auto-
matically collect relevant gene information from
biomedical data resources. The current version of
the gene dictionary contains a total of 34,959 en-
tries with 19,815 HUGO-approved gene symbols,
19,788 HUGO-approved gene names, and 29,470
gene products. It should be noted that there are nu-
merous alias gene symbols and alias gene names
in these entries. We found at least 202 approved
gene symbols and 253 approved gene names that
are used as aliases in different entries or entries
without a LocusLink identifier. This tedious merg-
ing of data is a result of inconsistencies between
databases that cannot be solved simply by com-
bining data into one database. In addition, some
words belong to multiple categories and cannot be
classified easily into one category. We plan to ad-
dress these problems in the near future by improv-
ing our algorithms. We also want to improve the
merging system in order to create other types of
dictionaries that will allow comparative genome
research.

2.1.2 The disease dictionary

We used the Unified Medical Language Sys-
tem (UMLS) to collect disease-related vocabulary.
From the 2003AC edition of the UMLS Metathe-
saurus, we selected 12 unique identifiers of seman-

Table 1: Selected unique identifiers of semantic
type (TUIs)

T019 Congenital abnormality
T020 Acquired abnormality
T033 Finding
T037 Injury or poisoning
T046 Pathologic function
T047 Disease or syndrome
T048 Mental or behavioral dysfunction
T049 Cell or molecular dysfunction
T050 Experimental model of disease
T184 Sign or symptom
T190 Anatomical abnormality
T191 Neoplastic process

tic types (TUIs) that correspond to diseases names,
types of abnormal phenomena, or their symptoms
(Table 1). From these TUIs, 431,429 unique iden-
tifiers for strings (SUIs) for 159,448 unique identi-
fiers for concepts (CUIs) were extracted and stored
as a disease-related lexicon.

2.2 Annotation of corpus

The purpose of building an annotated corpus is to
construct the training data for machine learning.
This annotated corpus has two purposes. It is used
as training/testing data to filter out false positives
from the dictionary matching results and also to
recognize topic-classified relations.

To build training and testing sets, we collected



1,362,285 abstracts through a Medline search us-
ing 248 prostate cancer-related terms selected
from our disease dictionary. From these abstracts,
we generated 2,503,037 co-occurrences1 using
the dictionary-based longest matching technique.
Each co-occurrence is a candidate for a topic-
classified relation between one prostate cancer and
one gene. We chose 3,939 co-occurrences ran-
domly, and they were annotated by four biologists.

For the annotation of prostate cancer-gene rela-
tions, we considered three aspects. In other words,
the annotator judged a co-occurrence ascorrect if
any of the following three types of relations be-
tween the gene and disease had been described in
the co-occurrence.

1. Pathophysiology, the mechanisms of dis-
eases, including etiology, the causes of dis-
eases.

2. Therapeutic significance of genes or gene
products, more specifically, classification of
genes or gene products classified based on
their therapeutic use and their potential as
therapeutic targets.

3. The use of genes and gene products as mark-
ers for disease risk, diagnosis, and prognosis.

2.2.1 Six points of view for sentences that
contain prostate cancer and gene pairs

In addition to thebinary relation between
prostate cancer and a gene, we attempted to ana-
lyze the following six points of view for sentences
that contain prostate cancer and gene pairs.

1. Study description (method)
In many cases, sentences in theMethods
section of papers do not give specific results
or conclusions. However, those sentences
are still supposed to contain allusive disease-
gene relations.

Example 1 Thereafter plasma S, cortisol (F)
and adrenocorticotropic hormone (ACTH)
responses to metyrapone were investigated in
13 normal adult males and 39 patients with
prostatic cancer.

1When a sentence contains more than one disease or
gene name, the system makes copies of the sentence based
on the number of disease-gene pairs. We call these copies
co − occurrences, they are the input units of our system.
For example, if the names of two genes and one disease are
referred to in a sentence, then our system makes two co-
occurrences from the sentence.

2. Genetic variation
There are genotypic differences among in-
dividuals in a population. For example,
mutation (including germ line and somatic),
polymorphism (SNP, microsatellite, restric-
tion fragment length), and LOH.

Example 2 A polymorphism in endostatin,
an angiogenesis inhibitor, predisposes for the
development of prostatic adenocarcinoma.

3. Gene expression
Gene expression is the phenotypic manifes-
tation of a gene by the processes of genetic
transcription and translation. Its profiling is
also included.

Example 3 The expression of HNK-1 anti-
gen on prostatic cancer was investigated im-
munohistochemically using the avidin-biotin-
peroxidase complex (ABC) method with the
anti-HNK-1 monoclonal antibody.

4. Epigenetics
Chemical modifications to DNA or histones
alter the structure of a chromatin without
changing the nucleotide sequence of the
DNA.

Example 4 Hypermethylation of the 5’ pro-
moter region of the glutathione S-transferase
pi gene (GSTP1) occurs at a very high fre-
quency in prostate adenocarcinoma.

5. Pharmacology
Pharmacology is the science of drugs, includ-
ing their composition, uses, and effects.

Example 5 OBJECTIVES: To assess the in-
volvement of calcitonin gene-related peptide
(CGRP) in the occurrence of hot flashes in
men after castration for treatment of prostate
cancer, we investigated the effects of CGRP
on skin temperature in surgically and medi-
cally castrated male rats.

6. Clinical marker
Measurable and quantifiable gene products
are used as biological parameters to indicate
health- and physiology-related assessments,
such as disease risk, disease diagnosis, cell
line development, and epidemiologic studies.



Example 6 The use of prostate specific anti-
gen (PSA) and digital rectal examination
(DRE) results in a three fold increase in pro-
static carcinoma detection.

2.3 Machine learning-based named entity
recognition

We used a machine learning-based named entity
recognition method for two purposes. One pur-
pose is to provide a feature for each candidate
in a machine learning-based topic-classified rela-
tion recognition method, and the other is to filter
out numerous false positives. The performance of
disease and gene name recognition by dictionary
matching tends to over-recognize yielding a lot of
false positives. A machine learning-based filtering
technique can be used to improve the recognition.
Maximum entropy models have been used to train
the named entity filter. They exhibited the good
performances in the CoNLL-2003 shared task of
biomedical named entity recognition, and they are
widely used in solving classification problems.

2.3.1 Features for named entity recognition

The feature sets used in our experiments were
as follows:

• Bag of words:
All contextual terms in a co-occurrence were
considered as a feature.

• Candidate names and contextual terms:
The features we considered were the candi-
date name itself by dictionary matching tech-
nique as well as unigrams and bigrams. A
unigram refers to the word either before or
after the candidate name; a bigram refers to
the two adjacent words either before or after
the candidate name.

• Use of capital letters and numerical digits in
the candidate term:
Capital letters and numerical digits fre-
quently appear in biomedical terms. We ac-
counted for whether or not candidate names
contained capital letters and numerical digits.

• Greek letters in the candidate term:
Greek letters (e.g., alpha, beta, and
gamma.) are strong indicators of biomed-
ical terms. Greek letters appear in their
original forms such asα, β, Γ(γ).

Table 2: Affix feature
Prefix/Suffix Examples

∼cin actinomycin
∼mide Cycloheximide
∼zole Sulphamethoxazole
∼lipid Phospholipids
∼rogen Estrogen
∼vitamin dihydroxyvitamin
∼blast erythroblast
∼cyte thymocyte
∼peptide neuropeptide
∼ma hybridoma
∼virus cytomegalovirus

• Affixes of the candidate term:
Prefixes and suffixes can be very important
cues for terminology identification. We con-
sidered 11 suffixes given in Table 2. These
affixes are commonly used in biomedical
terms.

2.4 Machine learning-based topic-classified
relation recognition

Disease and gene name pairs co-occurring in a
sentence may have some potential relations. We
are especially interested in the biomedically mean-
ingful relations defined in the previous section.
We developed maximum entropy-based binary
classifiers to determine if each pre-defined relation
holds between each disease and gene name pair.

2.4.1 Feature set for topic-classified relation
recognition

A maximum entropy-based machine learning
technique was applied to the co-occurrences in or-
der to recognize instances of meaningful relations.
To achieve this, we took into account rich contex-
tual features. The feature set used in our experi-
ments was as follows:

• Bag of words:
All contextual terms in a co-occurrence were
considered as a feature.

• Candidate disease and gene names and con-
textual terms:
The features we considered were the candi-
date disease and gene names themselves as
well as unigrams and bigrams of the disease
and gene names. We used two kinds of can-
didate names according to experiments: one
is recognized by biologists, and the other is
recognized by our machine learning-based
named entity recognition method. A unigram



refers to the word either before or after the
candidate disease or gene name; a bigram
refers to the two adjacent words either before
or after the candidate disease or gene name.

• Sequence of candidate names:
We accounted for the sequence of a can-
didate gene name and a candidate disease
name in each co-occurrence. In other words,
we checked whether or not a candidate gene
name appeared earlier than a candidate dis-
ease name in each co-occurrence.

3 Experimental results

We conducted five sets of experiments for topic-
classified relation recognition. The first set
of experiments used only the gene and disease
dictionary-based longest matching technique. The
second set of experiments used not only the
gene and disease dictionary matching technique
but also disease and gene name filtering. The
next three sets of experiments used the maxi-
mum entropy-based machine learning technique
for topic-classified relation recognition. The
third set of experiments used only the maximum
entropy-based topic-classified relation recognition
and did not use named entity recognition results.
The fourth set of experiments used the maxi-
mum entropy-based named entity recognition re-
sults as features for topic-classified relation recog-
nition. However, the fifth set of experiments used
the maximum entropy-based named entity recog-
nition results for filter. We compared the two
approaches in the second, fourth and fifth sets
of experiments. One approach, which we call
automatic NER, is to use maximum entropy-
based named entity recognition results both on
training and on testing procedures. The other,
which we callmanual NER, is to use human-
generated disease and gene names annotation re-
sults both on training and on testing procedures.
Table 3 lists the performance of all the experi-
ments. The numbers in the first column are the
total number of correct answers that are annotated
by biologists for each topic-classified relation. We
performed 10-fold cross validation to evaluate the
systems.

3.1 Performances using dictionary matching
(baseline)

The baseline experiment is very simple: we as-
sumed that all prostate cancer-gene pairs recog-

Table 4: Performance of named entity recognition
Features Precision Relative recall

1 2 3 4 5 6 7 (%) (%)
84.4 100.0√
93.5 95.4√
95.0 98.3√
93.1 93.3

G
√

84.4 100.0
E

√
84.4 100.0

N
√

84.4 100.0
E

√
84.4 100.0√ √ √
94.4 96.1√ √
95.0 97.1√ √ √
95.8 97.0√ √ √
94.9 96.7√ √ √
94.9 97.0√ √ √ √
95.8 96.9
99.2 100.0

D
√

99.3 99.8
I

√
99.3 100.0

S
√

99.3 100.0
E

√
99.2 100.0

A
√

99.2 100.0
S

√
99.2 100.0

E
√

99.2 100.0√ √ √ √
99.3 100.0

Note : 1) Bag of words ( all words in co-occurrence ); 2) can-

didate disease and gene names; 3) contextual terms; 4) pres-

ence of capital letters in candidate term; 5) presence of nu-

merical digits in candidate term; 6) presence of Greek letters

in candidate term; 7) presence of affixes of candidate term.

nized by dictionary-based longest matching have
a relationship and hold for the all topic-classified
relations. The performance of the baseline experi-
ment is listed in the third column of Table 3.

It should be noted that our dictionaries do not
cover all disease and gene names, and thus, we
could not calculate theabsolute recall in this ex-
periment. Instead, we usedrelative recall as a
performance measure. The relative recall is cal-
culated by assuming that the baseline method per-
forms at 100% of this metric. In this approach,
we are interested in how precise our system is at
correctly identifying the relations, rather than how
often it misses other meaningful relations. Thus,
we focused on improving the precision.

3.2 Performances using dictionary matching
and a disease and gene name filter

We applied named entity recognition techniques
to filter out false positives generated by dictio-
nary matching, and we assumed that all the re-
mained prostate cancer-gene pairs have a relation-
ship and hold for the all topic-classified relations.
A maximum entropy-based named entity recogni-
tion result was used for filter both on training and



Table 3: Experimental results.
Topic-classified Relations Co-occurrence NER for filter RR RR with NER for feature RR with NER for filter
(# of correct answers) (%) w/o NER Automatic Manual w/o NER Automatic Manual Automatic Manual
Relation PRE 81.1 91.8 96.7 91.0 91.5 97.0 92.1 97.1
(3196) REC 100.0 97.0 100.0 95.3 96.1 99.6 96.5 99.6
Study description PRE 26.7 30.2 31.8 65.9 67.5 70.8 67.6 70.6
(1050) REC 100.0 97.2 100.0 57.6 57.6 63.0 62.9 62.9
Genetic Variation PRE 7.1 8.1 8.4 79.6 78.6 81.9 79.4 83.1
(278) REC 100.0 98.9 100.0 67.3 67.3 70.1 73.6 73.6
Gene Expression PRE 27.1 30.8 32.3 71.4 73.0 76.2 73.5 76.8
(1067) REC 100.0 97.4 100.0 62.4 61.4 64.5 63.5 64.9
Epigenetics PRE 1.3 1.6 1.6 87.9 85.7 85.4 88.1 88.1
(53) REC 100.0 100.0 100.0 54.7 67.9 66.0 69.8 69.8
Pharmacology PRE 9.1 10.3 10.9 64.4 69.7 66.7 63.7 67.2
(360) REC 100.0 96.1 100.0 44.2 45.3 45.0 44.4 45.3
Clinical marker PRE 31.5 35.9 37.5 75.3 77.9 78.2 76.6 78.3
(1240) REC 100.0 97.8 100.0 70.1 73.2 74.0 73.6 75.4

Notes) Co-occurrence: baseline; NER: machine learning-based disease and gene named entity recognition results; RR: ma-

chine learning-based topic-classified relation recognition; Automatic: experiments using maximum entropy-based named entity

recognition results; Manual: experiments using human-generated annotation results; PRE: precision; REC: relative recall.

on testing procedures in the automatic NER ap-
proach. However, a human-generated disease and
gene names annotation result was used for filter-
ing both on training and on testing procedures in
the manual NER approach. The performances are
listed in the fourth and fifth columns of Table 3.
The disease and gene name filtering method im-
proves the precision of all topic-classified relation
recognitions at the cost of a small reduction in re-
call. We used the best combination of features
that had been attained empirically for named en-
tity recognition.

• Recognition of gene names:
Candidate names, contextual terms, and pres-
ence of capital letters in the candidate term.

• Recognition of disease names:
Candidate names, contextual terms, and pres-
ence of capital letters or Greek letters in the
candidate term.

Table 4 shows the performances of named en-
tity recognition using various combinations of fea-
tures. The first rows for gene and disease names
express the performance using dictionary match-
ing. For the disease names, dictionary match-
ing generated very high performance. Thus, the
performance of disease name recognition could
slightly improve the precision in this experiment.

The performance ofrelation in the second ex-
periment (in Table 3) was comparatively high.
Manual analysis revealed that most correctly iden-
tified disease-gene pairs will safely hold for almost
any relation2.

296.7% of all the 2,494 correctly identified disease-gene
pairs had been annotated to hold relation.

3.3 Performances using machine
learning-based topic-classified relation
recognition

We used machine learning techniques for topic-
classified relation recognition. Dictionary match-
ing results are the input of this set of experiments,
and the best combination of features was consid-
ered.

• Relation and clinical marker:
Candidate gene and disease names, contex-
tual terms, and sequence of candidate names.

• Study description, genetic variation, gene ex-
pression, epigenetics and pharmacology:
Bag of words, candidate gene and disease
names, contextual terms, and sequence of
candidate names.

This experiment did not consider named entity
recognition results, and the sixth column of Ta-
ble 3 describes the performance. Although the
experiment did not consider the disease and gene
named entity recognition results, the precision of
the machine learning-based topic-classified rela-
tion recognition method was much better than that
in the baseline experiment.

3.4 Performances using machine
learning-based topic-classified relation
recognition and named entity recognition
results as features

We used the disease and gene names recognition
results as features in addition to the contextual fea-
tures that we considered in section 3.3. A maxi-
mum entropy-based named entity recognition re-
sult was used as a feature both on training and



Table 5: Performance of NER
Gene

Precision 95.8%
Relative recall 97.0%

Prostate cancer
Precision 99.3%

Relative recall 100.0%

on testing procedures in the automatic NER ap-
proach (i.e., the seventh column of Table 3). How-
ever, a human-generated disease and gene names
annotation result was used as a feature both on
training and on testing procedures in the man-
ual NER approach (i.e., the eighth column of Ta-
ble 3). Experimental results showed that using
named entity recognition results as features for
topic-classified relation recognition improves the
performance. We can infer that the disease and
gene named entity recognition information is a co-
gent feature.

3.5 Performances using machine
learning-based topic-classified relation
recognition and named entity recognition
as filter

Named entity recognition results were used to fil-
ter out over-generated disease-gene pairs by dic-
tionary matching. A maximum entropy-based
named entity recognition result and a human-
generated disease and gene names annotation re-
sult were used for filtering the over-generated
disease-gene pairs both on training and on test-
ing procedures in the automatic NER and manual
NER approaches, respectively. Topic-classified
relation recognition modules were given only co-
occurrences that remained after filtering, and we
also used only co-occurrences that remained after
filtering to evaluate the performances of the fifth
experiment. The performances of these experi-
ments are shown in the ninth and tenth columns of
Table 3. We used the same combination of features
as those for the experiments in section 3.3. Fil-
tering with named entity recognition results pro-
vided higher performance of topic-classified rela-
tion recognition than using named entity recogni-
tion results as features for machine learning-based
topic-classified relation recognition.

4 Conclusions

We have developed machine learning-based topic-
classified relation recognizers. Six points of
view were used to analyze sentences that contain

prostate cancer and gene pairs. Selected Medline
abstracts were annotated for these six points of
view. A simple dictionary-based longest match-
ing method was tested, which produced numerous
false positive results. The annotated abstracts were
then input to a maximum entropy-based machine
learning module in order to train named entity rec-
ognizers and relation recognizers. A comprehen-
sive series of experiments revealed that the ma-
chine learning-based approach that used rich con-
textual features had the potential to improve the
performance of topic-classified relation recogni-
tion. The effect of two approaches by combin-
ing two recognizers was also investigated. The
results are encouraging and we are planning sev-
eral extensions that include incorporating disam-
biguation techniques (Gaudan et al., 2005) and
deep syntactic parsing techniques (ENJU, Tsujii
group, 2006) and (Ninomiya et al., 2005). Both
classes of techniques have been applied success-
fully to several tasks, and we expect that incorpo-
rating such techniques will supplement our meth-
ods by providing appropriate treatment to polyse-
mous terms and richer features of deep syntactic
structure.
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