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We describe a system that extracts disease-gene relations from MedLine. We con-
structed a dictionary for disease and gene names from six public databases and
extracted relation candidates by dictionary matching. Since dictionary matching
produces a large number of false positives, we developed a method of machine
learning-based named entity recognition (NER) to filter out false recognitions of
disease/gene names. We found that the performance of relation extraction is heav-
ily dependent upon the performance of NER filtering and that the filtering improves
the precision of relation extraction by 26.7% at the cost of a small reduction in
recall.

1. Introduction

The continuing rapid development of the internet makes it very easy to
quickly access large amounts of data online. However, it is impossible for a
single human to read and comprehend a significant fraction of the available
information, and there is a real need for the application of natural language
processing techniques in many domains that would facilitate quick and easy
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retrieval of useful information. Genomics is not an exception. Databases
such as MedLine have a vast amount of knowledge.

Our aim in this paper is to extract diseases and their relevant genes from
MedLine abstracts, which we term relation extraction. There are some
existing systems for relation extraction from biomedical literature. Arrow-
Smith (Swanson 1986) ! and BITOLA (Hristovski 2003) 2 extract relations
between diseases and genes using background knowledge about the chromo-
somal location of the starting disease as well as the chromosomal location of
the candidate genes from resources such as LocusLink, HUGO and OMIM.
These systems are designed to discover new, potentially meaningful rela-
tions between diseases and genes which do not occur together in the same
published article. If concept X and concept Y are related to each other, the
systems assume that concepts Z and X have some relationship if Z is rele-
vant to Y. Finally, the systems check whether X and Z appear together in
the medical literature. If they do not appear together, this pair (X and Z) is
considered as a potentially new relation. G2D (Perez-Iratxeta 2002) 3 also
extracts relations by Relative score, which is calculated by co-occurrence
information. G2D assumes that relevant terms occur together in many ab-
stracts. An appealing feature of these three systems is that all outputs of
these systems are terms used in publicly available biomedical data sources,
which means these outputs are linked to such databases and can be used by
other researchers. However, these approaches have some problems: Their
results could conceivably contain a lot of false positives because they yield
too many relations that are dependent only on the co-occurrence informa-
tion; so many of their results may be unreliable. They have done only a
preliminary analysis on the precision of the outputs.

There are some studies that employ various NLP techniques in order to
obtain high-precision knowledge from biomedical literature. Proux (2000)
extracted gene-gene interactions by manually constructed predicate pat-
terns, which they call scenarios. For example, ‘[gene product] acts as a
[modifier] of [gene]’ is a scenario of the predicate ‘act’, which can cover a sen-
tence like: “Egl protein acts as a repressor of BicD”. In this approach, they
employed several techniques for linguistic analysis. Concerning the named
entity recognition, they used a part-of-speech (POS) tagger that is based
on finite state transducers (FST). This POS tagger contained tokeniza-
tion and morphological analysis to provide possible POS tags. They used a
Hidden Markov Model (HMM) for disambiguation and domain-specific cor-
pora for correcting errors. They then attempted to identify entity names.
After that, they did shallow parsing of local structures around verbs to
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analyze their subjects and objects and made a conceptual graph using a
domain-specific ontology. Experimental results show 81% precision and
44% recall. Pustejovsky (2002) 5 also used predicate patterns. They did
not build these patterns manually, but extracted patterns from a manually-
constructed training corpus. Then they analyzed the subject and the object
relation for a main verb to extract them as the arguments for a relation. In
this approach, they attempted to recognize entity names by shallow parsing
and identify semantic type using a domain ontology, and they dealt with
acronym problems and anaphora resolution. Experimental results show
90% precision and 59% recall. The advantages of these approaches are that
they considered various contextual features using NLP techniques. How-
ever, these approaches have a problem in terms of extracting practical and
reusable biological knowledge. The outputs only provide information about
relations among the “terms” appearing in text. In other words, the entities
in the outputs are not explicitly linked to entities in biological databases.
If the outputs provide links to explicit knowledge models, then the utility
of these outputs will be increased for other researchers.

In this paper, we extract relations by named entity recognition that
consists of two steps. The first step uses a dictionary-based longest match-
ing technique. We create dictionaries constructed from public biomedical
databases, which enables us to explicitly link extracted relations with the
entries in such databases. Since dictionary-based matching produces many
false positives, we filter them out by machine learning in the second step.

2. Relation Extraction using Dictionaries and Machine
Learning

Figure 1 shows the architecture of our system. Our system first collects
sentences that contain at least one pair of disease and gene names, using the
dictionary-based longest matching technique. The system then attempts
to extract a binary relation between the disease and gene names in each
sentence 2.

In this work, we use machine learning to filter out false positives from
the dictionary-based longest matching results.

aWhen a sentence contains more than one disease or one gene, the system makes copies of
the sentence according to the number of disease-gene pairs. We call each of these copies
co — occurrence, and regard these items as the input unit of our system. For example,
if there are two gene names and one disease name in a sentence, then our system makes
two co-occurrences for this sentence.
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Figure 1. The system architecture
We have three types of false positives in the dictionary-based results:

e False gene names
e False disease names
e False relations

There are some existing studies in natural language processing aimed
at filtering out the first two types of false positives. Tsuruoka and Tsujii &
proposed a dictionary-based longest matching approach for protein name
recognition where they employed a Naive-Bayes classifier to filter out false
positives. However, since their dictionary was constructed from the training
corpus, their experimental setting is different from the real situation where
we have a dictionary constructed from biomedical databases. Furthermore,
they used only local context as the features for filtering.

In the following sections, we explain our techniques including dictionar-
ies, a corpus, and the NER filter in detail.
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2.1. Construction of the Gene and Disease Dictionaries

In order for each output entry to be linked to publicly available biomedical
data sources, we created a human gene dictionary and a disease dictionary
by merging the entries of multiple public biomedical databases. These
two dictionaries provide gene and disease-related terms and cross-references
between the original databases.

2.1.1. The gene dictionary

A unique LocusLink identifier for genetic loci is assigned to each entry
in the gene dictionary, which enables us to consistently merge gene infor-
mation dispersed in different databases. Each entry in the merged gene
dictionary holds all relevant literature information associated with a given
gene. We used five public databases to build the gene dictionary: HUGO,
LocusLink, SwissProt, RefSeq, and DDBJ(July 2004). Each entry con-
sisted of five items: gene name, gene symbol, gene product, chromoso-
mal band, and PubMed ID tags. Based on these principles, we created a
database-merging system to automatically collect relevant gene information
from biomedical data resources. The current version of the gene dictionary
contains a total of 34,959 entries with 19,815 HUGO-approved gene sym-
bols, 19,788 HUGO-approved gene names, and 29,470 gene products. It
should be noted that there are numerous alias gene symbols and alias gene
names in these entries. We found at least 202 approved gene symbols and
253 approved gene names that are used as aliases, in different entries, or
entries without a LocusLink identifier. This tedious merging of data is a
result of inconsistencies between databases that cannot be simply solved
by combining data into one database. In addition, some words belong to
multiple categories and cannot be easily classified into one category. We
plan to address these problems in the near future by improving our algo-
rithms. We also hope to improve the merging system to create other types
of dictionaries that will allow comparative genome research.

2.1.2. The disease dictionary

We used the Unified Medical Language System (UMLS) to collect disease-
related vocabulary. From the 2003AC edition of the UMLS Metathesaurus,
we selected 12 TUIs (unique identifiers of semantic types) that correspond
to diseases names, types of abnormal phenomena, or their symptoms (Ta-
ble 1). From these TUIs, 431,429 SUIs (unique identifiers for strings) for
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Table 1. Selected TUIs (Unique identifiers of
semantic type)

T019 Congenital Abnormality
T020 Acquired Abnormality
T033 Finding

T037 Injury or Poisoning
T046 Pathologic Function
T047 Disease or Syndrome

T048 | Mental or Behavioral Dysfunction
T049 Cell or Molecular Dysfunction
T050 Experimental Model of Disease

T184 Sign or Symptom
T190 Anatomical Abnormality
T191 Neoplastic Process

159,448 CUIs (unique identifiers for concepts) were extracted and stored as
a disease-related lexicon.

2.2. Annotation of Corpus

The purpose of building an annotated corpus is to construct the train-
ing data for machine learning that will filter out false positives from the
dictionary-based results.

To build training and testing sets, 1,362,285 abstracts were collected
through a Medline search, using Medical Subject Headings (MeSH) terms.
In this work, we used “Diseases Category” [MeSH| AND (“Amino Acids,
Peptides, and Proteins”[MeSH| OR “Genetic Structures” [MeSH]) as
the keywords. From the resulting abstracts, we generated 2,503,037 co-
occurrences using the dictionary-based longest matching technique. Each
co-occurrence is a candidate of a relation between one disease and one gene.
We chose 1,000 co-occurrences randomly®, and they were annotated by one
biologist.

Figure 2 shows an example of an annotation. Disease and gene can-
didates are highlighted: there are four candidates in two co-occurrences.
PRCC and PSA are candidate genes and renal cell carcinoma and BPH
are candidate diseases. These items were recognized by the dictionary-
based longest matching technique. The check boxes labeled correct gene
and correct disease are marked by a biologist if he considers the candidates
to be correct gene (or disease) names®.

As for the annotation on disease-gene relations, we considered the fol-

bWe checked all the 1,000 co-occurrences and found that they were all different sentences
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We therefore demonstrated, for the first time, that an increase in the fiee to total PSA ratio in BPH cases
may be due to cleaved PSA forms (which are enzymatically inactive and unable to bind inhibitors), or
possibly related to basic free PSA, which may represent the zymogen forms.
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Figure 2. Example of annotated co-occurrences

lowing three aspects. In other words, the annotator judged a co-occurrence
as “correct” if any of the following three types of relations between the gene
and disease was described in the sentence.

e Pathophysiology, or the mechanisms of diseases, containing etiol-
ogy, or the causes of diseases.

e Therapeutic significance of the genes or the gene products, more
specifically classified to their therapeutic use and their potential as
therapeutic targets.

e The use of the genes and the gene products as markers for the
disease risk, diagnosis, and prognosis.

Among 1,000 co-occurrences, 572 co-occurrences contained correctly
identified diseases and genes by a biologist. The important observation
was that 94% of the 572 co-occurrences were annotated as correct rela-
tions, which means that there are few false positives for relations if the
disease and gene names are correct. Therefore, we did not perform filtering
for relations in this work. Figure 3 shows an example of the remaining 6%
of the 572 co-occurrences whose gene and disease were identified as correct
but whose relation was incorrect.

and they all came from different abstracts.

¢A name can be embedded in a different name. For example, the dictionary match-
ing may find the disease name APC in the term APC gene, in which APC would be

annotated as “incorrect”. Embedded names are a major source of false recognitions of
gene/disease names.
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The results show that 1) both IL-1beta and IL-6 induce fevers in obese and lean rats; 2) IL-1beta
nduces a significantly higher fever response in obese rats than it does in lean rats; 3) IL-6 induces a
sienificantly higher fever response in lean rats than it does in obese rats; 4) IL-2 induces a moderate
fever response in lean but not obese rats; 5) TNF-alpha induces a similar fever response in obese and
lean rats; and 6) the fevers nduced by each effective cytokine have different time courses.
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Figure 3. An example of an annotated co-occurrence whose gene and disease are iden-
tified as correct but relation as incorrect

2.3. Filtering with a Maximum Entropy-based NER
Classifier

To improve the precision of recognizing gene and disease names, we propose
the use of a maximum entropy model to filter out false positives. Maximum
entropy models exhibited the best performance in the CoNLL-2003 Shared
Task of NER, and are widely used in classification problems in natural
language processing. For smoothing, we used Gaussian prior modeling and
tuned this parameter with empirical experiments and set it to 300 for genes
and 400 for diseases.

2.3.1. Features for NER

The feature sets used in our experiments are as follows:

e Candidate names and contextual terms:
The features we considered were the candidate name itself as well as
unigrams and bigrams. A unigram refers to the word either before
or after the candidate name; a bigram refers to the two adjacent
words either before or after the candidate name.

e Head word information and the predicate:
We used the head word information (the word itself and its part-
of-speech) of the maximal projection of the disease/gene name
as a feature. This analysis is given by the deep-syntactic parser
ENJU 74,

In addition, we expect that an important clue for NER is

whether or not the candidate is used as an argument of a verb.
This is because certain verbs in biomedical literature occur fre-

dENJU achieved 87.85% precision and 86.85% recall on the Penn Treebank and the

average parsing time was 360 ms 8.
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quently and have a relationship with a disease/gene name; for ex-
ample, induce, activate, contain, and phosphorylate. We named
this kind of verb the predicate and considered it as a feature.

e The expanded form of an acronym:
One of the difficulties in term recognition from biomedical literature
is the problem of ambiguous acronyms. One acronym can be used
with different meanings. We can solve this problem if we have
access to its full form. Thus, we tried to map the acronym of a
candidate name to its full form by scanning the entire abstract.
When coming across an acronym, the system searches for the full
form of the acronym and uses the last word of the full form as a
feature. In practice, an acronym and its full form usually occur
simultaneously as full form (acronym) when they first appear in
a document.

e Part-of-speech (POS) tags:
We considered the POSs of the candidate name and its surrounding
words. To tag the words with POS labels, we used the Genia Part-
of-Speech Tagger ° which is trained on a combined set of the
newswire corpus (Penn Treebank) and biological corpus (GENTA
corpus 10).

e Use of capitals and digits in the candidate term:
Capital characters and numbers frequently appear in biomedical
terms. We considered whether candidate names contain capital
characters and digits or not.

o Greek letters in the candidate term:
Greek letters (e.g. alpha, beta, gamma, etc.) are strong indicators
of biomedical terms. These Greek letters appear in their original
forms such as «, 3, T'(y).

o Affixes of the candidate term:
Prefixes and suffixes can be very important cues for terminology
identification. We considered the 11 suffixes given in Table 2.
These affixes are commonly used in biomedical terms.

3. Experimental Results

We conducted two sets of experiments for disease-gene relation extraction.
One is an experiment without NER filtering and the other is an experiment
with NER filtering.
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Table 2. Affix feature
Prefix/Suffix Examples
~cin actinomycin
~mide Cycloheximide
~zole Sulphamethoxazole
~lipid Phospholipids
~rogen Estrogen
~vitamin dihydroxyvitamin
~blast erythroblast
~cyte thymocyte
~peptide neuropeptide
~ma hybridoma
~virus cytomegalovirus

Ws-procs9x6

3.1. Ezxperiments without Filtering (Baseline)

Our baseline experiment is very simple: we assume that all disease-gene
pairs recognized by dictionary matching indicate relations. The perfor-
mance of this baseline experiment is shown in the first row of Table 3.

It should be noted that our dictionaries do not cover all disease/gene
names, and thus we cannot calculate the absolute recall in this experiment.
Instead, we use relative recall as a performance measure, and the relative
recall given by the baseline method is 100% by definition. In this approach,
our interest is in how precise our system is at correctly identifying the
relations, rather than how often it misses other meaningful relations.

3.2. Ezxperiments with Filtering

The second set of experiments made use of the maximum entropy-based
NER filter. Table 3 lists the performance percentages of relation extraction.
We found that NER filtering improves the precision of relation extraction
by 26.7% at the cost of a small reduction in recall. This suggests that
the performance of relation extraction is very much dependent upon the
performance of NER. In this experiment, we used the best combination of
features for NER (see Table 4):

e Recognition of Gene names:
Contextual terms, capitalization, Greek letters, POS of dis-
ease/gene names and its head, words of predicate and head and
full forms if candidate names are acronyms.

e Recognition of Disease names:
Contextual terms, capitalization, POS of disease/gene names and
unigram words and words of head.
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Table 3. Relation extraction performance

Precision(%) | Relative recall(%)
without filtering 51.8 100.0
with filtering 78.5 87.1

Table 4. NER performance

Features Precision | Relative recall
1 2 3 4 5 6 7 8 9 10 | 11 (%) (%)
NaRY 86.4 90.2
ViIiviV 85.9 90.2
G|V |V Vv 86.2 90.6
E|V |V v 86.0 90.2
N |V |V v 86.3 89.4
E| V|V V4 85.9 90.2
ViV Vv v Vv 86.2 90.9
V|V v V4 v 86.5 90.5
Vv v N VIvIvIv] 890 90.9
vV |V 88.5 97.8
D | VA 88.5 97.9
I v Vv 88.6 98.1
S | Vv v 88.6 98.1
E |V VA 88.5 96.0
AV Va 89.8 95.5
S| V|V ViVl V 90.0 96.6
E|V |V VIiVvIiVIVIV 89.6 96.6
vV oV NVERVARY v 89.6 96.0

Note: 1: Candidate disease/gene names and Contextual terms; 2: Use of capitals in the
candidate term; 3: Use of digits in the candidate term; 4: Greek letters in the candidate term;
5: Affixes of the candidate term; 6: POS of disease/gene names; 7: POS of disease/gene names
and unigram; 8: Head word; 9: POS of head word; 10: Predicates of a candidate disease/gene
name; 11: Expanded forms if candidate disease/gene names are acronyms.

All the experimental results for NER considered contextual terms. This
is because this feature is the most powerful in recognizing candidate names.
It leads to improved NER performance of 6.6% for genes and 2.1% for
diseases.

4. Conclusion and Future work

The aim of this research was to build a system to automatically extract
useful information from publicly available biomedical data sources. In par-
ticular, our focus was on relation extraction between diseases and genes.
We found that named-entity recognition (NER) using ME-based filtering
significantly improves the precision of relation extraction at the cost of a
small reduction in recall.
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We conducted experiments to show the performance of our relation ex-
traction system and how it depends on the performance of the NER scheme.
We could safely regard co-occurrences as containing correct relations if can-
didate disease and gene names were considered to be correct.

In this work, we did not address the problem of polysemous terms,
which would cause difficulty in linking such terms with database entries.
One solution would be to incorporate techniques for ambiguity resolution
into our system. For example, S. Gaudan et al. proposed the use of SVMs
for abbreviation resolution and achieved 98.9% precision and 98.2% recall.

The number of co-occurrences in the training and testing sets was rather
small for the purpose of evaluating our system. Future work should encom-
pass increasing the size of the annotated corpus and enriching annotation.
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