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ABSTRACT

Motivation: One of the bottlenecks of biomedical data integration

is variation of terms. Exact string matching often fails to associate

a name with its biological concept, i.e. ID or accession number

in the database, due to seemingly small differences of names.

Soft string matching potentially enables us to find the relevant ID

by considering the similarity between the names. However,

the accuracy of soft matching highly depends on the similarity

measure employed.

Results: We used logistic regression for learning a string similarity

measure from a dictionary. Experiments using several large-scale

gene/protein name dictionaries showed that the logistic regression-

based similarity measure outperforms existing similarity measures

in dictionary look-up tasks.

Availability: A dictionary look-up system using the similarity

measures described in this article is available at http://

text0.mib.man.ac.uk/software/mldic/

Contact: yoshimasa.tsuruoka@manchester.ac.uk

1 INTRODUCTION

Looking up a gene/protein dictionary is a common task for both

computer systems and researchers in biomedical research. Many

of the information extraction systems developed for biomedical

documents provide a mapping between gene/protein names

found in text and their corresponding identifiers (IDs) in

biological databases (Hoffmann and Valencia, 2005; Miyao

et al., 2006; Morgan et al., 2004). Databases of genes and

proteins usually provide an interface that allows the user to

search for the entry of interest using a name.

One of the major obstacles that hinder the effective use of

a gene/protein dictionary is the problemof term variation. This is

also one of the reasons why text mining systems often fail to find

genes or proteinsmentioned in the text (Crim et al., 2005;Hanisch

et al. 2005;Morgan andHirschman, 2007;Yeganova et al., 2004).
Types of term variation include orthographic variation

(e.g. ‘IL2’ and ‘IL-2’), morphological variation (e.g. ‘GHF-1

transcriptional factor and ‘GHF-1 transcription factor’),

Roman-Arabic (e.g. ‘Synapsin 3’ and ‘Synapsin III’), acronym-

definition (e.g. ‘IL-2’ and ‘interleukin-2’), extra words

(e.g. ‘Zfp580’ and ‘Zfp580 protein’), different word ordering
(e.g. ‘Serotonin receptor 1D’ and ‘Serotonin 1D receptor’)
and parenthetical material [e.g. ‘Ah receptor’ and ‘Ah (dioxin)
receptor’]. Attested term variants often result from a combina-

tion of these and can be very complex.
One way to alleviate the problem is to normalize the terms

(Fang et al., 2006). For example, converting capital letters

to lower case and deleting hyphens and spaces can resolve some
of the mismatches caused by orthographic variation.
Another approach, which may be employed in conjunction

with the normalization approach, is to use soft string
matching methods. Soft matching gives similarity scores
between strings, which allows us to associate termforms even

when they are not identical. Moreover, soft matching can
provide the user with multiple candidates that are ranked
according to their similarity scores.

The effectiveness of soft matching almost exclusively depends
on the design of the similarity measure that quantifies
the degree of similarity between two given strings. One could

use a similarity measure designed manually (krauthammer
et al., 2000; Tsuruoka and Tsujii, 2004), but recent studies have
shown that automatically tuned measures often give better

results. For the task of associating gene/protein names,
Yeganova et al., (2004) used a hidden Markov model which
optimizes its parameters by using synonymous pairs of strings
in the dictionary. Cohan and Minkov (2006) used a soft-

matching technique called SoftTFIDF, which enables us to
focus on salient words when comparing the strings.
This article explores the use of logistic regression to learn

a good string similarity. Unlike the aforementioned method
based on hidden Markov models, we use not only synonymous
pairs of strings but also non-synonymous pairs when optimiz-

ing the similarity measure. Moreover, the model allows us
to make use of diverse types of information as features that
characterize each string pair.

We compare the performance of several similarity measures
against the onewederive through logistic regression in two sets of
dictionary lookup experiments. In the first set of experiments,

we use five species-specific dictionaries, and evaluate the
performance of similarity measures using the entries which are
held out from each dictionary. In the second set of experiments,

we use gene/protein names that actually appear in MEDLINE
abstracts for evaluation.*To whom correspondence should be addressed.
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This article is organized as follows. Section 2 summarizes

previous work on string similarity measures. In Section 3,

we describe the dictionaries and data sets used in the

experiments. Section 4 presents a similarity measure based on

logistic regression and features used for representing a sample.

Section 5 describes experimental results using dictionaries

created from BioThesaurus (Liu et al., 2006) and the data

provided by the BioCreAtIvE II Gene Normalization task

(Morgan and Hirschman, 2007).

2 RELATED WORK

Simple similarity measures for soft string matching include

character n-gram similarity, the Levenshtein distance

(Levenshtein, 1965) and the Jaro–Winkler measure (Winkler,

1999), in which the same penalty value is used regardless of the

characters to be matched (or ignored). In general, these simple

measures do not work very well for gene/protein names on their

own, but they can be useful in situations where the computa-

tional cost needs to be minimized.
One can employ a more sophisticated measure by defining

different scores for different characters and matching opera-

tions. It is straightforward to use different scores in edit

distance-like similarity measures. Karuthammer et al., (2000)

used the well-known BLAST algorithm to identify gene and

protein names in text. They converted each character in the

strings into an amino-acid sequence so that the BLAST

algorithm can find matched strings in a sentence using the

similarity measure originally developed for gene sequence

alignment. Tsuruoka and Tsuji, (2004) used an edit distance

measure for protein named entity recognition. They manually

tuned the cost function to make it less sensitive to capitalization

and hyphenation, and reported an improvement of recall.
There are algorithms that enable us to ‘‘learn’’ string

similarity from actual examples of string pairs. Ristad and

Yianilos (1998) proposed a generative model for edit distance,

and presented an algorithm for tuning the cost of edit operations

using synonymous pairs of strings. Smith et al. (2003) proposed

to use an HMM-based probabilistic model for sequence

alignment, and described a training algorithm based on the

forward-backward algorithm with which one can estimate

the parameters of the HMM using pairs of relevant sequences

as the training data. Yeganova et al. (2004) applied this model to

the identification of related gene/protein names using manually

curated training data, and reported their advantages over the

aforementioned BLAST-based method. Wellner et al. (2005)

proposed to train conditional random fields on the optimal

operation sequences given by the Levenshtein distance.

The learnable string similarity approaches described above,

however, use only synonymous pairs of strings for tuning the

parameters. A relatively new line of research is to use non-

synonymous pairs as well as synonymous pairs by employing

discriminative learning models. Cohen and Richman (2002)

proposed to use a maximum entropy-based binary classifier to

combine multiple similarity metrics, and applied their method to

the task of integrating database entities. Bilenko and Mooney

(2003) used a support vector machine for a similar task. Bilenko

et al. (2005) proposed online learning of similarity functions

using a voted-perceptron algorithm. McCallum et al. (2005)

presented a string edit distance function based on conditional

random fields, which allows us to use a variety of features of

strings and edit operations.
These discriminative learning-based approaches are attrac-

tive because they (a) enable us to explicitly consider the

‘dissimilarity’ of strings, (b) allow us to incorporate a variety of

features for characterizing a string pair. For instance,

the protein names ‘GATA binding protein 2’ and ‘GATA

binding protein 5’ are very similar on the character level, but

one might want to focus on the difference in the numbers

(‘2’ and ‘5’) when quantifying the similarity between them.

This type of information can be easily incorporated as a feature

in these discriminative learning models.

3 DATA FOR TRAINING AND EVALUATION

This work is largely motivated by the recent development

of large-scale gene/protein name dictionaries, including GENA

(Koike et al., 2003), ProMiner (Hanisch et al., 2005)

and BioThesaurus. These dictionaries are typically constructed

by extracting names and descriptions from general biological

databases (e.g. HUGO, OMIM, Swiss-Prot, Locuslink)

and species-specific databases (e.g.MGI, FlyBase,MGD, SGD).
What makes these dictionaries particularly appealing is that

they contain variants of names as well as canonical names.

Table 1 shows an example of a gene/protein dictionary. Actual

dictionaries typically contain other types of information such

as DNA sequences and literature references, but here we focus

only on the names and their IDs.
We can learn a variety of information from such dictionary

entries. For example, Table 1 tells us that we should match

‘AP3B1’ and ‘AP-3 complex subunit beta-1’ because these

names share the same ID. At the same time, the dictionary tells

us that we should not match ‘AP-3 complex subunit beta-1’

with ‘AP-3 complex subunit mu-2’ because they belong to

different IDs. In other words, these entries suggest that we treat

‘AP3B1’ and ‘AP-3 complex subunit beta-1’ as being similar,

and ‘AP-3 complex subunit beta-1’ and ‘AP-3 complex subunit

mu-2’ as being dissimilar.
BioThesaurus (Liu et al., 2006) is a collection of more than

two million gene/protein names from many different species,

and as it includes variants of different types it is a useful

resource to enable us to learn string similarity.

For the experiments in this article, we create species-specific

dictionaries from BioThesaurus data1 for five species (Human,

Mouse, E.coli, Yeast and Drosophila). Each entry

in BioThesaurus is associated with a UniProt ID. We consulted

the UniProtKB/Swiss-Prot database2 for selecting a species-

specific subset from BioThesaurus. We then removed non-

sensical terms, e.g. accession numbers for other databases, using

simple regular expressions. Each resulting dictionary is split into

two sets. One is used for training, and the other is used for

evaluation.
For the second set of experiments, we use a human gene/

protein name dictionary, and names that actually appear in

MEDLINE abstracts. We extracted these data from the data

1‘bio Thesaurus.dist_2.0.gz’ available at ftp.pir.georgetown.edu.
2Available at http://www.ebi.uniport.org/database/download.shtml
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set originally developed for the gene normalization task at

BioCreAtIvE II (2006). The original data set contains the text

of MEDLINE abstracts as well, but we do not use them since

the recognition of gene/protein names is not our focus in this

article.
Table 2 shows statistics of the dictionaries used in the

experiments. The dictionaries contain many variants. Each ID

has 5–14 synonymous names on average.

4 LEARNING STRING SIMILARITY MEASURES
USING LOGISTIC REGRESSION

As discussed in the previous sections, a dictionary provides

information about what kind of string pairs should be regarded

as synonymous (or non-synonymous). In order to build

a similarity measure based on the dictionary, we need to

generalize this information so that we can make this judgement

(synonymous or not) for an arbitrary pair of strings.
One way of achieving this generalization is to use a machine-

learning approach. In particular, we can use supervised

classification models. The task is formalized as a binary

classification problem, where the input is a pair of strings and

the output is a prediction of whether the strings are

synonymous or not. In general, a machine learning-based

classifier can output a confidence value for each prediction, so

we can use this value as the similarity value for the string pair.

In this work, we use logistic regression for the classification

model, which is defined as:

plðyjxÞ ¼
1

ZðxÞ
expð

X
i

�i fiðx, yÞÞ,

ZðxÞ ¼
X
y

expð
X
i

�i fiðx, yÞÞ,

where x is a pair of strings, y is a binary prediction (synonymous

or not), fi ðx, yÞ is either a binary or a real-valued feature function

that characterizes the string pair and li is the weight for the

feature. The weight parameters are determined in such a way

that the parameters maximize the conditional log-likelihood of

the training data
Pn

j¼1 log p ð y
ð jÞjxð jÞÞ.

Each item of the training data consists of a string pair and a

binary label indicating whether the members of the pair are

synonymous or not. Given a dictionary, we could, in principle,

create training data in the following way.
(1). Generate all possible pairs of names.

(2). Label each pair as SYNONYMOUS, if the pair share the same
ID, NON-SYNONYMOUS, otherwise.

However, this method generates Oðn2Þ samples from

a dictionary of n entries, and this amount of training data
leads to a prohibitive computational cost for training unless the

dictionary is small.

Moreover, there are some cases where we should not treat
names as being similar even if they share the same ID. For

example, Table 1 contains ‘HPS’ as a synonym for the ID

‘O00203’, but, on the surface, the name ‘HPS’ does not have

any similarity with a synonymous name ‘AP3B1’. This is

because the name ‘HPS’ has a different naming history to that

of ‘AP3B1’—‘HPS’ stems from a disease name. In such cases,

we should not expect a machine-learning algorithm, which
solely relies on surface string similarity, to associate the names.

To let the logistic regressionmodel learn fromonlymeaningful

samples, we introduce a filtering process. We create a training
sample from a string pair, whether it is synonymous or not,

only when at least one of the following conditions is satisfied:

� The two strings have a high value (40:5) of character
bigram similarity, which is computed as follows:

ðsimilarityÞ ¼
2jg1 \ g2j

jg1j þ jg2j
,

where g1 and g2 are the bigrams in the strings.

� All the characters in the shorter string are included in the

longer string in the same order.

In the evaluation stage, the measure simply gives a similarity

value of 0 to the pairs which do not pass this filtering.
This filtering process also has the merit of reducing the

amount of training samples, but the training cost was still very

high. The number of training samples for non-synonymous pairs

is much higher than that for synonymous pairs, and we found, in

preliminary experiments, that reducing the samples for non-
synonymous pairs does not have a large impact on the

overall performance. We therefore discarded three quarters of

the non-synonymous samples by random sampling.3

Table 1. Part of a gene/protein name dictionary

ID Gene/protein name

O00203 AP3B1

O00203 AP-3 complex subunit beta-1

O00203 AP3-complex beta-3A-adaptin chain

O00203 Adapter-related protein complex 3 beta-1 subunit

O00203 Adaptor protein complex AP-3 beta-1 subunit

O00203 beta-3A-adaptin subunit of the AP-3 complex

O00203 HPS

O00203 HPS2

O00203 HPS2 GENE

O00203 HERMANSKY-PUDLAK SYNDROME

O00203 HERMANSKY-PUDLAK SYNDROME 2

P53677 AP3M2

P53677 AP-3 complex subunit mu-2

Table 2. Statistics of dictionaries used in the experiments

Dictionary Number of IDs Number of names Number of names

per ID

Human 14893 205909 13.8

Mouse 11753 111702 9.5

E. coli 4875 37095 7.6

Yeast 5914 59020 10.0

Drosophila 2376 30891 13.0

BioCreAtIvE 32975 182996 5.5

Overall 72786 627613 8.6

3Since the dictionaries for E.coli, Yeast and Drosophila were small, we
were able to carry out experiments without this reduction process, but
the performance differences were very small. The recall scores at rank I
were 51.5, 60.1 and 63.6%, respectively (see Table 4 for comparsion).
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Furthermore, we limited the maximum number of names used in
the training to 32 000.

4.1 Features

Logistic regression modelling allows us to incorporate a variety

of features. Since the performance of machine learning heavily

depends on how to represent the samples, it is important to use
features that can well characterize a string pair. In other words,

the features should be able to capture the similarity between a

variety of variants (e.g. orthographical, morphological, syntac-
tical, modifiers) while highlighting the difference between those

terms which are not synonymous.
In our method, we use the following types of features.

4.1.1 Character bigrams We use the common character
bigrams between the two input strings as features. For example,

‘IL2’ consists of two bigrams (‘IL’ and ‘L2’), and ‘IL2R’
consists of three bigrams (‘IL’, ‘L2’ and ‘2R’). We use the

shared bigrams (‘IL’ and ‘L2’) as binary features. We also use

the value of character bigram similarity as a real-valued feature.
The similarity between orthographical, morphological and

syntactic variants is expected to be captured by these character

n-gram based features.

4.1.2 Prefix/suffix The prefix features focus on the prefixes

of the strings. Up to three characters are extracted from the
beginning of each string, and the combination of them are used

as features. Similarly, the suffix features focus on the suffixes of

the strings.

4.1.3 Sharing the same number The numbers in the names

often convey important information. For example, the string
pair ‘GATA binding protein 2’ and ‘GATA binding protein 5’

shares many characters, but the difference of ‘2’ and ‘5’ indicates

that they belong to different IDs. We use a binary feature which
indicates whether the strings contain the same number or not.

4.1.4 Acronym We define a feature which can capture the

possibility that one string is an acronym of the other. More
specifically, this binary feature indicates whether all the

characters in the shorter string are included in the longer

string in the same order.

4.1.5 Common tokens In addition to the character-level
features described above, we use token-level features. We first

tokenize each string using white spaces and some predefined
delimiters (‘-’, ‘/’, ‘(’, ‘)’, ‘[’, ‘]’ and ‘,’). We then generate the

intersection of the two token sets as features. For example, we get

‘GATA’, ‘binding’ and ‘5’ as the common tokens from the string
pair ‘GATA binding protein 5’ and ‘GATA binding factor 5’.

4.1.6 Different tokens We also use the symmetrical differ-
ence between the two token sets. For the above example, we

generate ‘protein’ and ‘factor’ as the different tokens. This
feature type is expected to capture tokens which are not

important in conveying the concept of a term.

4.1.7 SoftTFIDF One of the merits of using machine
learning is that we can incorporate information from a different

similarity measure. We use the value of SoftTFIDF similarity

as a real-valued feature.

5 EXPERIMENTS

We present experiments comparing our similarity measure to
other approaches that use soft string matching.

5.1 Existing soft-matching methods

For the purpose of performance comparison between our
proposed method and existing soft-matching methods, we used

the following four existing methods.

5.1.1 Levenshtein distance This is also known as the uniform
cost edit distance. The Levenshtein distance between two strings
s1 and s2 is defined as theminimum number of operations needed

to transform one string into the other, where an operation is an
insertion, deletion or substitution of a single character. Note that
this measure is defined as distance, but a distance value is easily

convertible to a similarity value in an obvious way.

5.1.2 Jaro-Winkler measure The Jaro measure between s1
and s2 is defined as:

Jaroðs1, s2Þ ¼
1

3

�
js01j

js1j
þ
js02j

js2j
þ
js01j � Ts1, s2

2js01j

�
,

where js1j and js2j are the lengths of s1 and s2, respectively. js
0
1j

is the number of ‘matching’ characters in s1, where a character
in s1 is considered matching if there is the same character in s2
and they are not farther than minðjs1j, js2jÞ=2. js

0
2j is defined

analogously. Ts1, s2 is the number of character positions at
which the character from s1 and the one from s2 are different.
Let p0 be the number of common prefix characters between s1

and s2. The Jaro–Winkler measure is

Jaro�Winklerðs1, s2Þ ¼ Jaroðs1, s2Þ þ
p

10
ð1� Jaroðs1, s2ÞÞ,

where p ¼ maxðp0, 4Þ.

5.1.3 Hidden Markov model-based approach (Smith et al.,
2003) The similarity value is defined as the probability

of generating matching operations with a hidden Markov
model. The cost values of matching operations are optimized
using synonymous pairs of strings and a forward–backward

algorithm.
We used their source code available at their ftp site4 for the

implementation. The model has several meta-parameters.

We used the best setting for the meta-parameters reported in
Yeganva et al. (2004), i.e. the number of states was set to three,
and the model was forced to be symmetrical.

To compute the similarity score from the output of
the HMM, we used the following equation as in Smith
et al. (2003).

scoreðs2; s1Þ ¼ log10 Prðs1, s2Þ � log10 Prðnull, s2Þ

5.1.4 SoftTFIDF We follow the definition of the SoftTFIDF
similarity given in Cohen and Minkov (2006). Each token ti in

string s is given a weight value wðti, sÞ, which is computed as
logð1þ TFÞ � logðIDFÞ, where TF is the frequency of the word in
the dictionary and IDF is the inverse of the fraction of names in

the dictionary that contain that word.

4ftp://ftp.ncbi.nlm.nlh.gov/pub//lsmith
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The SoftTFIDF similarity is given by

SoftTFIDFðs1, s2Þ ¼

P
i

P
j wðti, s1Þwðtj, s2Þsimðti, tjÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
i wðti, s1Þ

2
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

j wðtj, s2Þ
2

q ,

where simðti, tjÞ is the Jaro-Winkler measure between token ti
and tj if the measure is equal or greater than 0.9, or 0 otherwise.

5.2 Dictionary lookup evaluation with held-out entries

What we evaluate in our experiments is how accurately the
various similarity measures enable us tomap gene/protein names

with the correct IDs. The first set of experiments uses held-out
entries from the dictionary as the evaluation data. For each
species-specific dictionary that we derived from BioThesaurus,

we randomly select 1000 entries and remove them from the
dictionary. These removed entries are kept as the evaluation set.
We tune (or learn) string similarity using the remaining entries in

the dictionary. Finally, we evaluate the performance using the
evaluation set.
The gene/protein name of each entry in the evaluation set is

matched against the entries in the corresponding dictionary
using the similarity measure learned on the dictionary.5

We define the score for each ID as the maximum similarity
value for the gene/protein names that belong to the ID. The

system then ranks the IDs according to their scores.
Table 3 shows an example of a ranked list of IDs for the input

term ‘Acetylating enzyme for N-terminal of ribosomal protein

S5’, which is matched against the E.coli dictionary. The correct
ID for this protein name is ‘P0A948’, which has been ranked
second by the system for some (here unspecified) similarity

measure.
Once we obtain the ranked ID lists according to each

similarity measure for all the samples in the evaluation set, we

can evaluate the recall score for retrieving correct IDs at each

rank, which is given by Mi

N , where N is the number of samples in

the evaluation set, andMi is the number of correct IDs included

in the top i IDs output by the system.
Figures 1–5 compare the performance of the five different

methods for each species-specific set. The x-axis gives the ranks,

and the y-axis is the recall value achieved at each rank.
As expected, the simple similarity measures based on the

Levenshtein distance and the Jaro-Winkler metric were con-

firmed as not good as the learnable similarity measures. The

relative performance varies depending on the species-specific

dictionary, but in most cases SoftTFIDF performed slightly

better than hidden Markov models. The logistic regression

method gave the best results with large margins of more than

10% except for the E.coli data.
We should note that the absolute performance reported in

Figures 1–5 does not necessarily reflect the difficulty of mapping

gene/protein names in text to their IDs. For example, the high

number of polysemous terms in a dictionary is a major causes of

performance deterioration in these experiments, but it does not

necessarily mean that the actual mapping task is difficult because

such polysemous terms may not often appear in text.

One may be interested in how general each similarity measure

is. Our preliminary experiments indicated that the logistic

regression-based similarity measure is highly tuned to the

training dictionary. In other words, the similarity measure

trained for one species is not very useful for a different species.

One possible way of creating a more ‘general’ similarity measure

is to use a dictionary containing entries from multiple species in

training, which, however, entails an increased cost for training.

Table 3. Ranked list of IDs for the input ‘Acetylating enzyme for

N-terminal of ribosomal protein S5’ being matched against the E. coli

dictionary

Rank ID Score Gene/protein name Similarity

1 P0A7W1 0.969 Ribosomal protein S5 0.969

30S ribosomal protein S5 0.896

2 P0A948 0.824 Ribosomal-protein-S5-alanine

N-acetyltransferase

0.824

acetylase 0.065

Ribosomal-protein-alanine

acetyltransferase

0.064

3 P0A944 0.125 Ribosomal-protein-alanine

N-acetyltransferase rimI

0.125

Ribosomal-protein-alanine

acetyltransferase

0.064

: : : : :

The correct ID for this protein name is ‘P0A948’
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Fig. 2. Dictionary look-up performance (mouse).
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Fig. 1. Dictionary look-up performance (human).

5For all experiments,we applied very basic normalization (conversion of
captical letters to lower case and hyphens to spaces) to the strings prior
the use of similarity measures. This normalization has been shown to
have little side effect (Cohen et al., 2002).
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5.3 Dictionary lookup evaluation with gene/protein

names appearing in text

The training data set provided by the BioCreAtIvE II (2006)

gene normalization task contains human gene/protein name

snippets from MEDLINE abstracts and their EntrezGene

identifiers. For instance, the data provide a snippet ‘Ah (dioxin)

receptor’ and its EntrezGene ID ‘196’ for the sentence ‘‘The Ah

(dioxin) receptor binds a number of widely disseminated. . ..’’

The data also provide a dictionary, which we used for training

the similarity measures.

By using these data, we can conduct dictionary lookup

experiments similar to the ones presented in the previous section.

The difference is that this evaluation uses actual gene/protein

names attested in text rather than the gene/protein names held

out from the dictionary. This setting could be seen as the

situation where we have a tagger that can perfectly identify gene/

protein names in text. Thus, the difficulties of name tagging are

not considered here.
Note that we do not consider the problem of ambiguity either.

In the actual BioCreAtIvE II (2006) gene normalization task, one

would need to perform disambiguation for the polysemous

names using the context in which the name appears. In this work,

we are focusing on the relative performance of soft-matching

techniques, so we do not use any information about the context.

Theperformance reported in this section, therefore, shouldnotbe

compared against the performance of systems inBioCreAtIvE II.
Figure 6 shows the results. We can see the same trend between

the performance of the methods. The Jaro-Winkler method and

the Levenshtein distance are not as effective as the others.
SoftTFIDF and the logistic regression method performed

relatively well. The logistic regression method outperformed
SoftTFIDF. The difference was evident especially where top

ranked terms were concerned (69.3% versus 62.5% at rank 1 and
76.8% versus 73.8% at rank 2). The performance differences
among the similarity measures were smaller than in the

experiments using held-out entries, because many of the gene/
protein names in the evaluation set can be associated with the

correct IDs by exact string matching.
The logistic regression method failed to associate �14%

of the name snippets with the correct IDs even when top 10

names were considered. One of the major causes of the failures
was the ambiguity of snippets like ‘alpha 1 subunit’ and ‘beta c’.
Some kind of syntactic grammar should help resolve some

of the difficulties caused by complex construction such as
coordination (e.g. ‘PKC alpha, epsilon, and zeta’). About

two thirds of the mismatched names had been ruled out by
the filtering process described in Section 4. Further refinement
of the filtering method should be necessary not to rule

out associations such as acronyms with different character
ordering (e.g. ‘type 2 CRF receptors’ and ‘CRFR2’).

Additional experiments have been carried out using the
BioThesaurus dictionary (Human) instead of the dictionary
provided, achieving a recall of 91.5% at rank 10. This is an

additional indication that the completeness of the dictionary
significantly influences the performance.

5.4 Contribution of each feature type

Table 4 shows how each feature type contributed to the

dictionary-lookup performance. The first row shows the recall
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Fig. 3. Dictionary look-up performance (E.coli).
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Fig. 4. Dictionary look-up performance (yeast).
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Fig. 6. Dictionary look-up performance (BioCreAtIvE).
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Fig. 5. Dictionary look-up performance (Drosophila).
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values at rank 1 achieved when all feature types were used. The

other rows show the performance achieved when one of the

feature types was unused. The amount of contribution from each

feature type varies depending on the dictionary, but bigrams,

prefixes and suffixes were, overall, most influential.

6 CONCLUSION

We have described a method for learning a string similarity

measure using a logistic regression model and a gene/protein

name dictionary. We evaluated our method with several

dictionary look-up tasks. Experimental results show that our

logistic regression-based method outperforms existing soft-

matching methods.
The simplest application of our similarity measure would be

in a user interface for a database where one can search for the

ID of a gene/protein of interest by using its name. Our

technique is also applicable in information extraction systems

to aid mapping from text strings to canonical entries. Further

application can be found in areas such as ontology construction

and merging; aids to authors (mapping of author usage to

preferred usage); and term classification (Spasic et al., 2005)

and term clustering which can be used for advanced informa-

tion retrieval/extraction applications.
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Table 4. Contribution of each feature type
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Character bigrams 51.8 (�4.1) 50.1 (�3.7) 49.5 (�2.2) 57.3 (�1.9) 61.5 (�1.7) 61.9 (�7.1)
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Sharing the same number 54.0 (�1.9) 52.2 (�1.6) 51.8 (þ0.1) 58.7 (�0.5) 62.8 (�0.4) 68.6 (�0.6)

Acronym 54.0 (�1.9) 53.2 (�0.6) 51.1 (�0.6) 58.9 (�0.3) 63.0 (�0.3) 68.2 (�1.0)

Common tokens 54.3 (�1.6) 52.8 (�1.0) 51.3 (�0.4) 58.9 (�0.3) 63.0 (�0.2) 69.6 (þ0.4)

Different tokens 55.2 (�0.7) 55.0 (þ1.2) 50.8 (�0.9) 59.2 (�0.0) 62.7 (�0.5) 69.5 (þ0.3)

SoftTFIDF 55.2 (�0.7) 53.6 (�0.2) 51.5 (�0.2) 58.7 (�0.5) 63.2 (�0.0) 69.2 (�0.0)
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