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Abstract

Background: Extracting Protein-Protein Interactions (PPI) from research papers is a way of translating information
from English to the language used by the databases that store this information. With recent advances in automatic
PPI detection, it is now possible to speed up this process considerably. Syntactic features from different parsers for
biomedical English text are readily available, and can be used to improve the performance of such PPI extraction
systems.

Results: A complete PPI system was built. It uses a deep syntactic parser to capture the semantic meaning of
the sentences, and a shallow dependency parser to improve the performance further. Machine learning is used to
automatically make rules to extract pairs of interacting proteins from the semantics of the sentences. The results
have been evaluated using the AImed corpus, and they are better than earlier published results. The F-score of
the current system is 69.5% for cross-validation between pairs that may come from the same abstract, and 52.0%
when complete abstracts are hidden until final testing. Automatic 10-fold cross-validation on the entire AImed
corpus can be done in less than 45 minutes on a single server. We also present some previously unpublished
statistics about the AImed corpus, and a short analysis of the AImed representation language.

Conclusions: We present a PPI extraction system, using different syntactic parsers to extract features for SVM
with Tree Kernels, in order to automatically create rules to discover protein interactions described in the molecular
biology literature. The system performance is better than other published systems, and the implementation is
freely available to anyone who is interested in using the system for academic purposes. The system can help
researchers quickly discover reported PPIs, and thereby increasing the speed at which databases can be populated
and novel signaling pathways can be constructed.
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Background
The task of collecting relevant Protein-Protein Interactions (PPIs) from the thousands of new research papers
published every day is too time consuming to be done manually, so automatic approaches using some form of



Natural Language Processing (NLP) are necessary. For example, someone searching the PubMed database
for abstracts containing both the words “estrogen” and “cancer” could find 41.372 research paper references
on November 12th 2007, and new papers are added on this topic every day. NLP can help reduce the burden
on the human researcher, by automatically identifying which papers are truly about the relationship between
estrogen and cancer, and which papers just coincidentally mention both of these terms. NLP can also be
used to identify the exact locations in the papers that the human researcher should look closer at, and with
the help of dictionaries, ontologies and inference mechanisms, relevant information can be found even if the
author has used other synonyms instead of “estrogen” and “cancer” to describe the given relation. Many
research groups are currently focusing on solving these problems, but the implications of using different
parsers have not received much attention yet. In this research, we present a system that uses many existing
components and combines them to make a complete working PPI detection system. Especially, we study how
the use of a Head-Phrase Structure Grammar (HPSG) parser and a dependency parser helps the machine
learning component extracting good rules for PPI discovery. To make direct comparisons to other published
approaches possible, the results were evaluated using the AImed corpus. During the evaluation of the results,
it became obvious that some standardization is needed to perform fair comparison between PPI systems in
the future.

There are mainly two ways of doing evaluation on the AImed corpus in current literature. In most rule-
based systems, 10% of the abstracts are kept secret and only used for testing. This can be done 10 times
with a different 10% test-set every time, as long as the rule-generation is automatic, and only based on the
training set. However, most of the published machine learning evaluations indirectly use the same abstract
both for training and testing the systems. The results presented in this paper compare both these types of
evaluations, and show that our results are better than other published systems in either case.

One way to help verify that an evaluation on a given corpus is correct is to publish the modified data on-
line like Erkan et al. did [1]. Ideally, each biomedical corpus should have its own homepage where the users
of the corpus could post corrections, modifications, and additions to the existing corpus. These homepages
could then also be enhanced with automatic scoring services, tables of existing systems and comparisons.
There are some pages like this already, for example for the LLL corpus [2], but this corpus is too small
for machine learning systems, because they quickly run into data sparseness problems. Even AImed is
quite a small corpus, with only 225 abstract, so bigger corpora are needed, with their own homepages to
encourage competition, cooperation and further development or corrections of the corpus. During all the
recent experiments with AImed corpus, some small inconsistencies and errors have been discovered. We have
made a list of the corrections, to be posted on-line as a cleaned-up version of the corpus.

Related work
The biggest PPI extraction event arranged so far was the BioCreative2 challenge/workshop [3]. It gathered
26 research groups focusing on finding interacting proteins from MEDLINE abstracts, or from full text
journal papers in PDF or HTML formats. Since the BioCreative PPI challenge did not separate the task
of finding protein names and database identifiers from the task of finding interactions between the given
proteins, the total performance scores were all below F=30%. This number cannot be directly compared to
any of the published results on finding PPIs in the AImed corpus, since the training data provided was also
very different. The AImed corpus is made of plain text abstracts, and human experts identified the protein
names, and the exact locations of statements expressing PPI in the text. In the BioCreative training data,
the exact protein names used in the text were not known, since only protein identifiers from the UniProt
database were provided. Also, it was not clear which part of the full-text articles that actually describe
the given protein interaction, and since the articles were provided in PDF and HTML formats only, some
information can be lost in the process of recovering the plain text. This is especially true for protein names,
which often contain special encoding characters, like the Greek letters α, β and κ.

Another major difference between BioCreative2 training data and the AImed corpus is that BioCreative
only focused on PPI that is connected to experimental evidence in the text, without giving many examples
of such evidence passages. In the AImed corpus, all PPI-sentences are annotated, so even though the



BioCreative setting may be more similar to the work of database curators, the training data is not complete
enough to be used successfully in machine learning applications. Until more real examples can be provided
in the form of complete PPI corpora, we focus on the smaller, but complete, AImed corpus. That being said,
the system was also used, together with a protein name identifier, to produce well above average results for
the BioCreative PPI task.

Many recent studies have used 10-fold cross-validation to compare their results with other studies using
the AImed corpus [1,4–9]. Each of these papers report a different number of PPI pairs used from the AImed
corpus (Table 3), making direct comparison between different systems very hard. These different numbers
came from different ways of doing pre-processing and feature extraction. Unless proper care is taken, some
of the interaction pairs in the corpus may be lost (or new ones gained) as illustrated in Figures 1 and 2 using
two examples from a feature-set that was recently published on-line by Erkan et al [1].

Results and Discussion
The results from the different PPI experiments are given in Table 2a and 2b. Tables 3-5 provides some key
numbers for people interested in the AImed corpus. And Table 6 shows the computational time required to
run these experiments on one AMD64-bit processor with 32 GBytes of RAM. The discussion is presented in
the following sub-sections.

The influence of syntactic features on PPI extraction
Tables 1 and 2 shows the different combinations of feature sets, and the corresponding results. F1 is our
baseline, just using lemmatized word-features as Bag-Of-Words (BOW). F2 and F3 show that substituting
the baseline BOW-features with features from one single parser, HPSG or Dependency, does not yield much
improvement, but F6 shows that just the combined features from two parsers performs significantly better
than the baseline. F2, F3 and F6 show the performance of parsing-features alone, but in F4, F5 and F7 we
also kept the baseline BOW features. Now, F4 and F5 imply that adding either dependency or predicate-
argument relations can contribute to improved PPI extraction performance, and F6 and F7 imply that
their contributions are made in different ways. Dependency parsing is much faster than for example HPSG
parsing, but can still improve the performance of PPI extraction. HPSG parsing is more expensive, but it
also contributes to a bigger improvement compared to dependency parsing.

The Protein-Protein Interaction system
Another important result is the implementation of the PPI system itself. It brings together all the com-
ponents from the PPI pipeline, including sentence splitting, part-of-speech (POS) tagging, protein name
recognition, protein database-identifier mapping, syntactic parsing with different language models and ma-
chine learning with tree kernels, to perform the PPI extraction. To make all these systems work together,
the stand-off notation defined by the UIMA project was adopted [10]. This allows us to keep the original
text unchanged, and let each module in the pipeline add a new file with its own type of annotations. The
new files only specify the range of characters that each tag is spannning in the original text file. The original
text-file and the stand-off files and can easily be combined into an XML document, and operations like
import, export, sort, merge and clip can be done very efficiently with a tool called the Stand-Off Manager
(SOM).

The three most important inputs to the PPI module are the stand-off files with tags for Named Entities
(proteins) and the syntactic tags from the two parsers we want to evaluate. In case of the AImed corpus,
the protein tags are already provided, but when a prototype of this system was applied to the BioCreative2
PPI challenge data, the protein tags also had to be discovered. This was done with state-of-the-art precision
using tools like MedT-NER [11], which already supported the UIMA stand-off (SO) format. As for parsing,
we wanted to test two very different parsers, to see how their different outputs affect the performance of



machine learning on the AImed corpus. The first parser is a publicly available deep syntactic parser called
Enju. It has been adapted to the domain of molecular biology by re-training it with the GENIA corpus [12],
and it supports SO-output. The second parser is a word surface forms dependency parser made by Kenji
Sagae [13].

The PPI module reads all the SO input-files, together with the original text file, and performs two tasks
on the complete data. First, it extracts features from the parsers, and then it runs the support vector
machine with tree kernels (SVM-TK [14, 15]) algorithm, either in learning, classification or cross-validation
mode. Unless you want to do cross-validation, the data used for training and learning should be different.
For example, the prototype of the system that was used in the BioCreative2 challenge was first trained on
the AImed corpus abstracts, and the resulting support vectors were stored in a model file. Later, that model
file was used to predict interactions in the BioCreative2 articles. Some post-processing was also necessary,
since BioCreative only request the unique identifiers for the two interacting proteins, whereas our system
outputs all the sentences where two protein names interact. Even though the prototype system used for
BioCreative2 did not include the SVM-TK machine learning functionality, it achieved an F-score of 18.7%
on the SwissProt IPS test set, making it the 6th best system among 16 participants.

In the cross-validation mode, the expected input is abstracts which contain protein and interaction tags.
This input can be either in AImed style XML format, which will then be processed by the stand-off manager,
or in the form of two files containing already processed plaintext and corresponding entities in the SO-format.
The data is split into 10 groups with the same number of abstracts in each group, and then training and
testing are done 10-fold, with one new group used for testing each time. The results from some of these
cross-validations are presented in the next subsection.

Results from 10-fold cross-validation on AImed Corpus
There are at least two very different ways of doing 10-fold cross-validation using the AImed corpus. The
experiments in [4,5,7] all split the abstracts into 10 groups before doing any feature extraction. In order to
compare our results with them we did the same, and the results from this type of 10-fold cross-validations
for all the systems are presented in Table 2a.

In other experiments, pre-processing and feature extraction was first done on the whole corpus, before
randomly splitting the resulting pair-features into 10 groups, not minding which abstract the pair was
originally coming from. These numbers will naturally be 10-20% higher, because a single sentence with more
than one protein pair will usually produce many similar features that will be used both for training and
testing the system. Some experiments also count multiple mentions of the same pair within one abstract as
just one mention (see Figure 1). In this case the f-score will also be higher, since recall is perfect as soon as
just one of the mentions have been discovered.

The second way of doing 10-fold cross-validation is very popular when using machine learning techniques.
This is especially true when a parser is used to create the features for ML, since it is a waste of time to
parse the same text 10 times, when the output will be the same every time. And the creation of features
for each protein-pair will often be the same too, so these two tasks can often be done collectively for all
the 225 abstracts in the corpus just one time. However, not all parts of the pre-processing can be done in
this one-time fashion. For example, we included the 1000 most common lemmatized word forms as features,
which mean that we need to count all the words in the corpus. This frequency count could be generated
from the whole corpus during the one-time parsing, but that would mean that test data is used to create
the training set. A better way is to generate a new frequency list for each of the 10 folds, based only on the
90% of the data that is available for training.

The results in Table 2b shows that the pair-level evaluation gives higher f-scores for our system, and pre-
sumably also for other systems using this evaluation style. The three last entries in this table (Giuliano2006,
Mitsumori2006 and Yakushiji2006) are slightly different from the others, because they only counted two
mentions of the same interaction pair in the same abstract one time, both during training and testing. We
notice from Tables 2a and 2b that even though each parser alone cannot produce results much better than



lemmatized word features, the combination of features from two parsers, together with word features, is
many percent-points better than previous state-of-the-art performance.

The final results are from timing the experiments, to see how expensive they are in terms of computational
power. Table 6 shows the time used for the different parts of the pipeline.

Conclusions
We made a PPI extraction system, combining features from two parsers with very different language models,
to extract good features for the tree kernels in SVM-light, in order to automatically create rules to discover
protein interactions described in molecular biology literature. We experimented with features from a depen-
dency parser, and from a HPSG parser. The results show that the combination of multiple parsers is very
effective, and the resulting system performs better than the other published PPI systems. We also note that
comparison between different systems is complicated by the fact that pre-processing in different systems
removes different parts of the corpus, and that cross-validation without keeping test-abstracts completely
hidden from the training phase produces performance scores 10-20% higher than what can be expected in a
real-world application.

The implementation is freely available to anyone who might be interested in using this system for aca-
demic purposes. Because of the license agreement for SVM-TK, the system cannot be used for commercial
purposes without a written license agreement. The system was first implemented in Perl, but later also
translated to C++, and wrapped in Java as a UIMA component. Please contact the first author if you
are interested in using the program, or download it directly from our homepage (http://www-tsujii.is.s.u-
tokyo.ac.jp/∼satre/akane/). The C++ implementation of the system is tightly connected to the SVM-
TK [14,15], but the Perl implementation can produce feature files in different formats compatible with many
existing machine learning systems.

Methods
This section gives a more detailed description about the methods used to produce the results presented in
this paper. The following subsections describe each pipeline step sequentially.

System Input
The input to the system can be plain text as in the PubMed database of research abstracts, or HTML
versions of full papers provided on-line by many publishers like BioMed Central (BMC). In the case of
HTML input, the text is converted to plain text by a separate module, mainly by stripping away all the
HTML tags, and converting HTML entities to corresponding ASCII representations (e.g. the greek letter α
is changed into the string “alpha”). In addition to the plain text, the system also needs to know the position
of the proteins/genes mentioned in the text. This is called Named Entity Recognition (NER), and can be
done by many freely available existing tools, like ABNER [16], MedT-NER [11] or PowerBioNE [17].

In the next subsections, we will use the following sentence (third sentence from abstract with PMID
10074428) as an example sentence, to explain what happens in each module in the pipeline system. The
sentence, with its proteins and interacting pairs, is shown graphically in Figure 2, and duplicated here for
easy reference:
We have identified a new TNF-related ligand , designated human GITR ligand ( hGITRL ) , and its human
receptor ( hGITR ) , an ortholog of the recently discovered murine glucocorticoid-induced TNFR-related (
mGITR ) protein [ 4 ] .



Parsing
Enju is a Head-driven Phrase Structure Grammar (HPSG) parser, and it is capable of producing output in
the SO-format [18]. This means that it does not modify the original input text. Instead, the output from
the parser is stored in a separate file, with references to the positions of words, phrases and sentences in the
original text file.

The dependency parser we experimented with was originally used for the CoNLL-X 2007 Shared Task [19].
Later it was re-trained to perform better in the biomedical domain, by using the GENIA Treebank corpus.
Even though the dependency parser does not output stand-off format annotations, this can easily be created
automatically from the CoNLL-X shared task format, as long as the (white-space) tokenization is done
consistently.

Protein-Protein Interaction (PPI) detection
The stand-off files from NER and parsing are combined using a software component called the Stand-Off
Manager (SOM). SOM is optimized to run in linear time, and it can do jobs like exporting/importing between
XML and stand-off format. It also supports functions like sorting, merging, uniting and clipping specific tags
from stand-off files. The combined tags from the SOM are processed by the PPI module in several stages,
including creation of Predicate-Argument Structure (PAS) paths between all pairs of proteins within single
sentences. These PAS-paths remove many of the different ways that natural language can be used to express
the same fact, and creates a general representation of the relation between Protein1 and Protein2 for each
pair in the sentence. We created such PAS-paths for all the co-occurring (within a sentence) protein pairs
in the AImed corpus, and then we used machine learning to automatically create rules that say which parts
of the patterns that best can separate interacting protein pairs from non-interacting pairs.

AImed Corpus

The AImed corpus was created by Bunescu and Mooney [20], and contains 177 Medline abstracts with
interactions, and 48 abstracts without any PPI within single sentences (to create negative training examples).
25 of the “no interaction” abstracts are not supposed to contain interactions, while the remaining 23 should
contain interactions (but probably not within a single sentence), and therefore they were not annotated by
the creators of the AImed corpus.

The abstract files were cleaned to remove information like “PG-1377-AB”, address-lines like “AD - ...”
and citations (which should not be used in abstracts, since abstracts are often distributed without the
corresponding reference list) like “[4]”. The cleaned version of our example sentence is given in Figure 2.

Predicate Argument Structure (PAS) Paths

The PAS paths are constructed by finding the shortest path of PAS relations that connect Protein1 with
Protein2 in the parse tree. Some examples showing the different feature-trees that were used for machine
learning are presented in the Features subsection. The ML module itself is further described in the next
sub-section.

Machine Learning

The ML tool used is called SVM-light with Tree-Kernels (SVM-TK) [14, 15]. Tree-kernels give us an easy
way to represent the predicate argument structre or Dependency paths, or other syntactic features of the
sentence. One feature-line can also be a combination of trees and classical SVM feature sets. The features
extracted from interacting and non-interacting protein pairs are described in the following sub-section.



Features

The most basic feature set is simply “which words occur before, between and after the two protein names”
of any pair. This idea has been used by many others already [4–6]. The set of words used are restricted
to the 1000 most common words in the training part of the corpus, not including 322 common stop-words,
like “and”, “not”, “a” etc. Figure 3 shows an example, where the SVM numbers (1:1 13:1 256:1 etc.)
have been substituted with actual words to make it more readable. There are three vectors for each pair,
corresponding to the “before, between and after” word-groups. Figure 3 also shows the shortest PAS and
Dependency paths, extracted between the proteins in the interacting pair.

F-score

The comparisons between the different PPI systems are done based on the F-score measure. It is defined
as F = 2∗P∗R

P+R , where P (Precision) is the fraction of predicted pairs that are correct, and R (Recall) is the
fraction of corpus pairs that were found.
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Figure 1: AImed sentence with protein pairs example 2: an example of AImed tagging the same entity name
multiple times in one sentence, without indicating that it is the same name. In Erkan et al. [1] two of the
interaction pairs are “missing” because of this fact.



Figures
Figure 1 - SentencePairs1.pdf
Figure 2 - SentencePairs2.pdf
Figure 3 - Features.pdf

Tables
Table 1 - Language features used for the machine learning
Table 1a - Single machine learning features

Feature Description

After The set of tokens after the last mention of the last protein in the pair

Before The set of tokens before the first mention of the first protein in the pair

Between The set of tokens between the end of the first protein and the beginning of the last
protein in the pair

Head The final semantic head token (head of head of...) is used to represent a constituent

Lemma The base form of Words are used, e.g. singular form for nouns, and the infinite form for
verbs (taken from Enju when possible, and using surface forms in case of parse failure)

DEP Word-Dependencies from the Kenji Parser

PAS Predicate Argument Structure information from Enju

Path The smallest set of DEP or PAS head-lemmas connecting a pair of proteins

Table 1b - Feature sets used for machine learning
Feature Description
set

1 feature type

F1 Word-features: Before, Between, After

F2 Path: Kenji Dependency between Enju Lemmas

F3 Path: Enju PAS between Enju Lemmas

2 feature types

F4 Dependency Parsing + Word-features

F5 Enju + Word-features

F6 2 Paths: Enju & Dependency Parsing

All feature types

F7 Enju & Dependency Parsing + Word-features
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Figure 2: AImed sentence with protein pairs example 1: an example of the tagging done in the AImed
Corpus and the corresponding automatic converted data from Erkan et al. (CLAIR) [1]: One protein name
is changed, one protein name is deleted, and two of the interaction pairs are mixed up when the annotation
is mapped into this format.



AIMED PMID 10074428, Sentence 3, Pair 2
We have identified a new TNF-related ligand , designated human GITR ligand ( hGITRL ) 
, and its human receptor ( hGITR ) , an ortholog of the recently discovered murine 
glucocorticoid induced TNFR-related ( mGITR ) protein [ 4 ] .

Word Features 1000 most common lemmatized words (unordered, uncounted)

Before identify  new  ligand  , designate  human

Between (  PROT  )  ,  human  receptor

After ) ,  recently murine (  PROT  protein

AIMED PMID 10074428, Sentence 3, Non-Interacting Pair 3
We have identified a new TNF-related ligand , designated human GITR ligand ( hGITRL ) 
, and its human receptor ( hGITR ) , an ortholog of the recently discovered murine 
glucocorticoid induced TNFR-related ( mGITR ) protein [ 4 ] .

Word Features 1000 most common lemmatized words (unordered, uncounted)

Before identify  new  ligand  , designate  human

Between (  PROT  )  ,  human  receptor recently murine

After <empty>

Word Features

AIMED PMID 10074428, Sentence 3, Pair 2
We have identified a new TNF-related ligand , designated human GITR ligand ( hGITRL ) 
, and its human receptor ( hGITR ) , an ortholog of the recently discovered murine 
glucocorticoid induced TNFR-related ( mGITR ) protein [ 4 ] .

ENTITY1designateligand and receptor ( ENTITY2Enju :

arg3 arg2 

arg1

arg2 arg1 arg2 

ENTITY1ligand receptor ENTITY2Kenji:

NMOD

NMOD

PRN

Predicate and Dependency Path Features

Figure 3: Word and Tree-Kernel features extracted from example sentence 1.



Table 2 - Comparison of different systems evaluated on AImed
Table 2a - Results with 10 separate groups of abstracts, and sentence/pair-level evaluation

10-fold cross-validation

Features / Method Prec Rec F-score

Words only

F1 Words 55.7% 29.2% 37.8%

Parsers only

F2 Kenji 67.6% 26.3% 37.1%
F3 Enju 72.0% 28.7% 41.0%
F6 K+E 68.9% 37.8% 48.6%

Words and Parsers combined

F4 Kenji+W 59.9% 39.3% 46.9%
F5 Enju+W 61.3% 40.7% 48.6%
F7 K+E+W 64.3% 44.1% 52.0%

Bunescu2005 [4] 65.0% 46.4% 54.2%
Giuliano2006 [6] 60.9% 57.2% 59.0%
Mitsumori2006 [5] 54.2% 42.6% 47.7%
Yakushiji2005 [7] 33.7% 33.1% 33.4%

Table 2b - Random sampling 10% of pairs, 10 times
False 10-fold cross-validation

Method Prec Rec F-score

Words only

F1 Words 68.6% 48.0% 56.2%

Parsers only

F2 Kenji 76.2% 35.6% 48.4%
F3 Enju 76.0% 39.7% 52.0%
F6 K+E 78.0% 51.6% 62.1%

Words and Parsers combined

F4 Kenji+W 70.1% 53.1% 60.3%
F5 Enju+W 73.2% 54.6% 62.4%
F7 K+E+W 78.1% 62.7% 69.5%

Erkan2007 [1] 59.6% 60.7% 60.0%
Katrenko2007 [9] 45.0% 68.4% 54.3%

Giuliano2006 [6] 64.5% 63.2% 63.9%
Mitsumori2006 [5] 55.7% 53.6% 54.3%
Yakushiji2006 [8] 71.8% 48.4% 57.3%

Table 3 - Interacting/total number of pairs reported in different papers
AImed Protein Pairs in different studies

Experiment Positive Total

AImed from FTP 1071 5631

This study 1068 5631

Erkan2007 [1] 951 4026

Katrenko2006 [9] 1006 5106

Mitsumori2006 [5] 1107 5476



Table 4 - Distribution of pairs among the AImed abstracts
Pairs per Abstract

Pair
Abstract

| Abstracts | | Pairs |
0 48 0

0,5 (3) 3

1 12 12

2 26 52

3 18 54

4 18 72

5 12 60

6 24 144

7 17 119

8 12 96

9 11 99

10 5 50

11 4 44

12 4 48

13 4 52

14 3 42

15 2 30

16 1 16

17 3 51

27 1 27

Sum 225 1071

Table 5 - Facts about the AImed corpus
AImed from FTP (the numbers)

Property Value

Total Lines 2202

AD - tags 225

AD - lines 222

(Missing AD sentence-splits) 3

Extra AD sentence split lines 17

Total Address lines 239

Remaining lines 1963

Title lines 225

Abstract-body sentences 1738

Missing sentence-splits 15

Extra sentence-splits 7

Total Titles and Sentences 1971

Table 6 - Pipeline processing time
Processing time for different sub-modules

Task Run-time
(minutes)

Pre-processing Corpus files 1

Dependency parsing, Kenji 4

HPSG parsing, Enju 27

Feature Extraction 1

10-fold SVM cross-validation 10

Total 10-fold cross-validation 43


