
Integrating Annotation Tools into UIMA for Interoperability

Scott Piao, Sophia Ananiadou and John McNaught

School of Computer Science & National Centre for Text Mining
The University of Manchester

UK

{scott.piao;sophia.ananiadou;john.mcnaught}@manchester.ac.uk

Abstract

In this paper, we discuss the issue of implementing the interoperability of natural language
annotation tools for text mining with the Unstructured Information Management Architecture
(UIMA) (Ferrucci and Lally, 2004; http://incubator.apache.org/uima). In particular, we discuss the
practical issue of designing UIMA annotation schemes for text mining applications based on our
experience in the EC BOOTStrep Project. Currently, a major obstacle to the efficient integration of
existing annotation tools for text mining is their lack of interoperability. Many such tools have been
developed in different projects following different theoretical approaches and annotation schemes,
hence they are highly specialized. Consequently, much effort and time are being wasted in adjusting
and modifying existing tools to make them interoperable, or even worse, in “re-inventing the
wheel”. Our experience shows that UIMA provides a practical way of implementing
interoperability for tools, but there are some practical issues to be tackled. Particularly, we found it
a challenging task to design a common/shared UIMA annotation scheme for different sets of tools.
A practical and flexible approach to solve such problems is required.

1. Introduction
Over the past few decades, we have seen an
ever increasing number of natural language
annotation tools designed for carrying out a
variety of tasks such as tokenization, parsing,
named entity recognition, semantic annotation,
etc. Such a rich pool of annotation tools should
allow for rapid development of information
management systems via composing the
existing tools. In reality, however, it can be a
complicated task to integrate tools of different
origins. Because such tools are often developed
in different projects following different
theoretical guidelines and implementing specific
annotation schemes, these tools tend to be
highly specialized and are not compatible with
each other thus lack interoperability.

This lack of interoperability of annotation
tools becomes a stumbling block when we need
to integrate them into larger systems. A typical
scenario is to develop a semantic analysis
system based on existing annotation tools. In
order to carry out semantic analysis of the
unstructured information contained in natural
language text, we need to integrate a set of
annotation tools to form a workflow, which can

extract information into certain structured
forms. For instance, in order to extract relations
between named entities (NEs) from texts, we
need to combine tools including sentence
delimiter, tokeniser, part of speech (POS)
tagger, chunker, syntactic parser, NE identifier,
co-reference detector etc. If the tools and the
annotation schemes available for such tasks are
not interoperable with each other, much time
and effort can be wasted in “cutting and fitting”
them, or even worse, in “re-inventing the
wheel”. Note that, in some cases, integrating
incompatible tools may involve a prohibitive
amount of technical work.

In recent years, the interoperability issue of
annotation tools has received increasing
attention, and some systems have been designed
and developed to address this problem. For
example, the General Architecture for Text
Engineering (GATE) (Cunningham et al. 2002)
provides a set of compatible annotation tools
and resources in the form of a class library
(SDK) with a graphical development
environment. Another major work in this regard
is the SciBorg Project (Copestake et al., 2006)1,

1 Also see website: http://www.cl.cam.ac.uk/
~aac10/escience/sciborg.html

in which a new mark-up language and a system
are being developed to combine and integrate
the information produced by various annotation
tools for extracting knowledge from Chemistry
papers. The ATLAS (Laprun et al., 2002;
http://www.nist.gov/speech/atlas/) project had a
similar goal.

However, compared to other existing
systems, the Unstructured Information
Management Architecture (UIMA) (Ferrucci
and Lally, 2004) provides a more flexible and
extensible architecture for implementing
interoperability. It is a prominent recent
development in the area of information
management, aiming to provide “a software
architecture for defining and composing
interoperable text and multimodal analytics”
(http://incubator.apache.org/uima). (Here
analytic refers to an analysis component,
analysis service or their combination.) This
architecture is adopted in the EC BOOTStrep
Project2 to support the interoperability of
various annotation tools involved in the project.
In this paper, we focus on some practical issues
concerning the application of UIMA to text
mining tasks based on our experiences in this
project.

The remainder of this paper is organized as
follows. Section 2 briefly describes the UIMA
architecture, section 3 discusses the issue of
UIMA annotation schemes, section 4 reports
our work on a UIMA annotation scheme as a
case study, section 5 provides a brief survey of
related work, and section 6 concludes the paper.

2. UIMA, an architecture for
interoperability
As mentioned already, UIMA provides an
architecture supporting interoperability of
analysis components, or analytics (we are only
concerned with text analytics in this paper). In
this architecture, UIMA analytics share data and
analysis results. A common data structure
named the Common Analysis Structure (CAS)
is used to represent the analysis data, including
the artefact (data to be analyzed) and its
metadata (data about the artefact). A CAS
instance contains objects linked by an object
graph. Each object, which represents a data
structure, is defined by a set of properties
implemented as slots. For example, an object of
class Token can be defined by the properties of

2The BOOTStrep Project is funded by the EC´s 6th
Framework Programme, aiming to pull together
existing biological databases and various
terminological repositories and implement a text
analysis system to populate a Bio-Lexicon and a Bio-
Ontology to support text mining. For further details,
see: www.bootstrep.org

lemma, POS tag(s) and a pair of regional
references pointing to the beginning and ending
positions of the token. In addition, UIMA
facilitates representation and separate
processing of different views of the same
artefact, such as the plain text and HTML
version of a web page, translations of a
document, etc.

In UIMA, the annotation information is
represented with classes, or types (type is used
henceforth). A type is defined by a set of
features, which can be either primitive types
such as String, Integer or references to other
types. For example, a Term type may contain
attributes such as baseForm, abbreviation,
confidenceScore (if extracted with a statistical
tool) etc. UIMA defines a set of primitive types
(e.g. String, Double, etc.) and base types (e.g.
FSArray, Annotation, etc.), but it crucially does
not provide any standard type system. It is the
users’ responsibility to define the type system(s)
suitable for their own needs.

A text analytic typically describes or
classifies certain regions of a text according to
pre-defined categories, such as types of
syntactic constituents, types of NEs, relations
between NEs, etc. UIMA adopts a stand-off
annotation model, in which an annotation type
object typically points to a text region, such as a
word or person name. This supports a flexible
multilayer annotation model which allows
overlapping or even conflicting annotations of
the same text region. UIMA provides a built-in
type, named Annotation, which provides the
parent type for the user-defined types.

In order to support interoperability, all of the
objects contained in a CAS must be instances of
either the built-in UIMA types or those pre-
defined in a type system(s). Each UIMA
analytic can access the CAS, process objects in
it, update existing metadata, create new objects
in the CAS, or create new CAS(es). In this
process, the type system functions as a common
language among the analytics.

There are two important aspects of
interoperability to be considered. The first is
interoperability between the analytics in a work
flow. The input and output types of the analytics
must be within the range of the given type
system. This facilitates the exchange of data and
metadata between the analytics..For instance,
for a POS tagger and a syntactic parser to
interoperate, the tagger must output token types
with POS properties that are compatible with
those expected by the parser, i.e. both must use
an agreed tagset. The other important aspect is
interoperability between similar analytics. In
this regard, those analytics performing the same
functions accept as inputs and produce as
outputs the same types that are pre-defined by a
type system. For example, if a UIMA package

contains two POS taggers, they work on the
same input types and produce the same types.
This makes them inter-substitutable and their
performances can be compared with
convenience. This is important for rapidly
identifying the optimal tools for a given task.

Externally developed annotation tools can be
wrapped to integrate and interoperate within the
UIMA architecture, as illustrated by Fig. 1.
UIMA provides interfaces with which the
annotation information produced by these tools
can be converted into UIMA types and features.
It also supports interoperability at various
levels, including the data level, programming
model level, services level, etc.3

As shown above, UIMA provides a
sophisticated software architecture for achieving
interoperability of annotation tools.

Fig. 1: Integration of annotation tools with
UIMA

3. Some practical issues in applying
UIMA in text mining
Text mining technology enables us to “collect,
maintain, interpret, curate and discover
knowledge” (Ananiadou and McNaught, 2006).
To achieve this goal, we need to integrate a set
of NLP tools to form a text mining work flow.
As we discussed previously, UIMA provides
asoftware architecture for building such
applications based on existing NLP tools.
However, before we can efficiently apply the
UIMA architecture for text mining purposes,
there are some practical issues to be resolved. In
the following sections, we discuss some of these
issues based on our practical experience.

3.1 UIMA annotation scheme

A major issue regarding the application of
UIMA in text mining is the adoption or design

3 For further details, see
http://incubator.apache.org/uima/documentation.html

of a common or shared annotation scheme for a
project or research community. As UIMA does
not provide its own standard annotation scheme,
or type system, we need to adopt or design an
annotation scheme that caters for our specific
requirements.

In our case, where text mining application is
concerned, we need to design an annotation
scheme that generally meets the needs of the
TM community, at least for certain groups
sharing specific research interests and software
requirements. In particular, if several tool sets
of different origins are involved, a common
UIMA annotation scheme becomes
indispensable.

However, it should be stressed that we are
not aiming at a universal standard annotation
scheme for NLP and text mining. It can be
tempting to develop such a standard, whereas it
is not practical in reality4. This is due to the fact
that many existing annotation tools are based on
different theories and specific annotation
schemes. It is a well known fact that any
annotation scheme has its limitation in terms of
standardness. In his proposal of maxims
regarding corpus annotation, Leech (1997: 6-7)
points out: “… the annotation scheme is made
available to a research community on a caveat
emptor principle. It does not come with any
‘gold standard’ guarantee, but is offered as a
matter of practical usefulness only … their goal
should be to adopt annotations which are as
widely accepted and understood as can be
managed … No one annotation scheme should
claim authority as an absolute standard.
Annotation schemes tend to vary for good
practical reasons”. This would be even more
true if multiple languages are involved.

UIMA

more
t l

pos
tagger

syntactic
parser

NE recogniser

term
extractor

For instance, the Lancaster CLAWS POS
tagger (Garside, 1987) and the TreeTagger for
English5 employ different POS categories: Cx
and PTB tagsets respectively (Manning and
Schütze, 1999: 139-143). Similarly, MST Parser
(McDonald et al. 2005) is based on dependency
grammar (Hudson, 1984) whereas the Enju
parser (Miyao and Tsujii, 2005) is based on
Head-driven Phrase Structure Grammar (HPSG)
(Pollard and Sag, 1994). None of them can
claim to be a gold standard, and it is also
difficult to merge all of them into a single
standard.

Meanwhile, for the practical purposes of
data exchange, tool compatibility and
reusability, etc. within certain projects or a
research community, we need a common

4Although there are major related consensus-building
initiatives such as those of the EC LIRICS project
and ISO TC37/SC4.
5 For detailed information about TreeTagger, see
http://www.ims.uni-
stuttgart.de/projekte/corplex/TreeTagger.

annotation scheme, with the pre-condition that it
is flexible enough to accommodate the different
features of the individual annotation schemes
associated with the tools being used. Quoting
Leech (1997) again: “If different researchers
need to interchange data and resources (such as
annotated corpora), this is more easily achieved
if the same standards or guidelines have been
applied in different centres. The need for some
kind of standardization of annotation practices
is particularly evident when we come to the
mutual exchange of corpus software utilities …
But the need is to encourage convergent
practice without imposing a straitjacket of
uniformity which could inhibit flexibility and
productive innovation”. Therefore, an important
issue in designing such a common annotation
scheme is to keep a balance between
standardization and flexibility.

It is a relatively trivial task to achieve
interoperability between tools producing lower–
level annotations, such as text structural mark-
up, tokenization, POS tagging, etc. For instance,
tokenizing tools and sentence breakers generally
produce the same or similar outputs which can
be easily mapped to each other. Very often there
are only superficial differences, such as names
of types or features. Although POS taggers
present more challenges, in many cases they can
be mapped quite well, although the mapping is
not always bi-directional. For example, the
Lancaster C5/7 tagset can be neatly mapped to
the Penn Treebank (Marcus et al., 1993) tagset,
although the reverse is difficult. At least
generally approximate mappings are possible
for such annotations.

However, the higher level annotations,
including syntactic parsing and semantic
annotation, can present tough challenges. For
example, it is difficult to map between the
outputs of syntactic parsers based on
dependency grammar (DG) and HPSG. Similar
difficulties can be expected between semantic
annotation schemes which are based on
different semantic categories, e.g. between the
Lancaster UCREL semantic lexicon (Piao et al.,
2006) and WordNet (Fellbaum, 1998).

3.2 Solutions to integration of different
annotation schemes in UIMA

 There are three common ways of dealing with
the discrepancies between annotation schemes
under the UIMA framework.

The first approach is a minimalist approach,
in which the UIMA scheme includes only the
elements shared between the different schemes
under consideration, or the intersection of the
different schemes.

uima_scheme = scheme1∩scheme2∩…∩schemen
(n >= 2).

For example, let the three circles in Fig. 2

denote three different annotation schemes.
According to the minimalist approach, the
UIMA scheme is denoted by the overlapping
area of the three circles. With such an approach,
it is guaranteed that the information needed for
populating the types and features of the shared
UIMA annotation scheme can always be
obtained from the annotation tools involved.
Therefore, the developers of UIMA analytics
can make full use of the types and features of
the shared scheme, and can rest assured that
they are always available. The downside aspect
of this approach is the limitation of the
information that can be represented by the
UIMA scheme, for we would lose the
information of the unshared parts of the
schemes.

Scheme
1

Scheme 2

Scheme i

Shared
elements

Fig. 2: Multiple annotation schemes in UIMA.

The opposite approach can be a maximalist
approach, in which the shared UIMA annotation
scheme is the union of the elements available
from all of the different schemes. In Fig. 2, this
would be the entire area comprising the three
circles.

 uima_scheme = scheme1∪scheme2∪…∪schemen

In this approach, the unshared elements have

to be set as optional types and features, and the
availability of their values would depend on
which tool(s) are included in the workflow. An
obvious benefit of such an approach is the
maximized availability of information, i.e. it
does not lose any information that can
potentially be produced by the annotation tools
involved. With UIMA’s stand-off annotation
model, overlapping or conflicting annotations
can be stored as multi-layer annotations. The
developers of UIMA analytics can potentially
make use of all of the information that can be
produced/encoded by various annotation
tools/schemes. However, the potential problem

is that the values of some types and features
may not be available unless all of the tools
involved are run in parallel, which may not be
desirable, or may even be infeasible in certain
circumstances. Consequently, the developer
would have to check the availability of the
values of types and features when they
implement analytics based on the UIMA
scheme being used. Moreover, it would be
difficult to carry out comparative evaluations of
different tools designed for the same
functionality, e.g. different POS taggers, as the
annotation results can be encoded with
incompatible annotation schemes and thus lack
comparability.

The third approach is to design a neutral
common UIMA scheme, or a standard scheme
for a given project or community, then map all
other schemes into this standard. In theory, this
would be an ideal solution, in which all existing
different annotation schemes can be mapped
into a standard single scheme and the
interoperability of the schemes and tools can be
guaranteed. Wherever possible, this goal should
be pursued. Nevertheless, in many practical
situations it is difficult, if not impossible, to
achieve. As we pointed out, no annotation
scheme can claim to be the sole standard, and it
is very difficult to reach a unanimous agreement
on any such standard, even among a small
number of project partners.

In practice, we most likely need to adopt a
hybrid approach. Very often, a UIMA
application can contain a mixture of annotation
schemes and tools of different origins, some of
which can be identical or similar whereas the
others can be incompatible and difficult to
merge into a single standard. In such situations,
the only practical approach can be to merge the
schemes as much as possible while leaving the
difficult parts as parallel paths of the UIMA
scheme using the stand-off annotation
mechanism.

4. A case study
The BOOTStrep project, which involves
integrating existing NLP tools for knowledge
harvesting and text mining in the biology
domain, is a typical case concerning a shared
UIMA annotation scheme.

One of the tasks ofthis project is to design a
shared annotation scheme for the
interoperability of a collection of annotation
tools under the UIMA framework. The tools
involved in the project have been developed in
different projects at different research institutes.
Among these are the Genia tagger (Tsuruoka et
al., 2005), the Enju parser (Miyao and Tsujii,

2005) , a co-reference tool (Yang et al., 2004a,
2004b), and the OpenNLP tools6.

While those tools for low-level annotations
are largely compatible, including sentence
breakers, morphological analyzers and POS
taggers, the full syntactic parsers present a
tough challenge to the integration work due to
their different grammatical models. For
example, the OpenNLP parser trained on the
Penn Treebank corpus produces phrase structure
parse trees while the Enju parser modelled on
HPSG produces predicate argument structures
as the primary output. Even in its secondary
phrase structure output, each phrase has distinct
features as shown in Fig. 3 below.

⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪

⎨

⎧

=

parent
head_semantic
head_syntactic

category
)end(offset
)begin(offset

feature_phrase

Fig. 3: Main features of phrase type of the Enju

parser.

Such a discrepancy between the outputs of
different syntactic parsers causes difficulty for
merging/mapping them into a single common
annotation scheme. As a result, in the initial
stages of our project, a pair of parallel sub-
schemes was designed in order to accommodate
distinct features of the different tool sets.

Subsequent experimentation has revealed
that it is feasible to merge these two sub-
schemes in many parts, including text structural
marking-up, tokenizing, morpho-syntactic
analysis, etc. The most difficult part found so
far concerns full syntactic parsing. We envisage
that this would be the case for many similar
projects involving the interoperability issue of
annotation tools. Therefore, we conclude that
the practical way of integrating the different sets
of schemes and tools is to design a partially
divergent UIMA scheme, as illustrated in Fig. 4.

As one can expect, the divergent part of such
a shared annotation scheme may cause problems
and confusion to UIMA analytics developers
and therefore it needs special attention. One of
the possible technical solutions to this problem
can be the UIMA View mechanism which can
be used to represent subsets of objects in a
UIMA CAS. For example, the UIMA types
pertaining to the divergent parts of the shared
scheme (refer to Fig. 4) can be grouped into
separate views, linking them with a specific

6 For details of OpenNLP tools, see
http://opennlp.sourceforge.net/projects.html

parser. This would allow the UIMA analytics
developers to easily identify and access those
types related to the specific parser he activates.

As our experience shows, it is a challenging
task to design/develop a common UIMA
annotation scheme for UIMA applications when
various annotation tools are involved. Although
a single standard UIMA annotation scheme is
desirable, in practical circumstances it is often
necessary to take flexible approaches to
accommodate the distinct features of individual
schemes which are difficult to map or merge.

Fig. 4: A partially divergent UIMA annotation

scheme.

Another issue we face concerns the level at

which interoperability takes place. In the UIMA
architecture, we can implement interoperability
at various levels, including the data level,
programming model level, services level, etc. If
the tools are implemented with the same
programming language as that of the UIMA

SDK (currently Java), or the tools are locally
available, we can implement interoperability at
the programming model level, i.e. directly
integrate the tools via wrappers into the UIMA
system and put them into the workflow.
However, for various reasons, such as copyright
problems, lack of portability etc, sometimes it is
difficult to collect all the tools together at a
single site. In such cases, the solution is to build
a Web Services based distributed UIMA
system. UIMA provides a means of
implementing analysis services, such as SOAP
(Simple Object Access Protocol/Service
Oriented Architecture Protocol) services, which
remotely interoperate over the network. We
adopted this approach to achieve
interoperability between NLP tools which are
located in different institutes, as illustrated by
Fig. 5. Although the stability, scalability and
efficiency of this approach remain to be fully
examined, our initial tests show that it can
potentially provide a good solution for
integrating tools distributed across different
locations.

scheme/
toolset (2)

scheme/
toolset (1)

shared U
IM

A
 type system

doc metadata

tokenise/sentence
delimit

morpho-syntactic
annotation

syntactic
parse 1

syntactic
parse 2

semantic
annotation

text mining
applications

scheme/
toolset(n)

…

syntactic
parse m

..

analysis
service

(1)

analysis
service

(2)

analysis
service

(n)
…

Fig. 5: Distributed UIMA system

5. Related work
Besides the GATE and SciBorg projects already
mentioned, numerous projects have been carried
out aiming at the interoperability of annotation
tools. Much of the past work focuses on the
development and designing of standard and
shared annotation schemes. Some of these have
been widely accepted as quasi-standards in
certain communities.

local
UIMA

analytics

document
analysis
systems

parsers 1, 2, …
, m

.

Major annotation guidelines and schemes
include EAGLES/ISLE7 TEI (The Text
Encoding Initiative)8 , XCES (Corpus Encoding
Standard for XML)9, Penn TreeBank10, Dublin
Core Metadata Initiative11, LAF (Linguistic
Annotation Framework) (Ide and Romary,
2004), etc. They lay guidelines for encoding
information stored in natural language text,
which is to be followed by annotator
developers.

 Today, there are ongoing efforts to set out
such annotation standards. For example,
ISO/TC 37/SC4 is working towards setting
international standards for annotation and
processing of language resources12. Similar
efforts are being made by the EC LIRICS
project. With respect to the biomedical text
mining area, Genia (Kim et al., 2003) and
PennBioIE annotation schemes13 are among the
most influential annotation schemes.

 While these annotation schemes provide
guidelines to support data sharing and
compatibility of annotation tools to a certain
extent, a unified practical software architecture
is required for implementing interoperability
among annotation tools. UIMA fills this gap by
providing a flexible and practical means of
implementing interoperability based on existing
annotation tools and annotation schemes.

6. Conclusion
In this paper, we discussed some practical issues
pertaining to the implementation of
interoperability of annotation tools under the
UIMA architecture. In our experience, UIMA
can potentially provide a flexible and efficient
platform to support and facilitate
interoperability. Nevertheless, there are some
practical issues to be resolved before we can
efficiently apply UIMA to practical TM
applications. A particularly challenging issue in
this regard is the designing of a common UIMA
annotation scheme, or a shared UIMA type
system, for tools of different origins. As UIMA
continually evolves and becomes more
sophisticated, we will further explore the issue
of its application to text mining.

7 See
http://www.ilc.cnr.it/EAGLES96/isle/ISLE_Home_P
age.htm
8 See http://www.tei-c.org/
9 See http://www.cs.vassar.edu/XCES/
10 See http://www.cis.upenn.edu/~treebank/
11 See http://dublincore.org/
12 See
http://www.tc37sc4.org/new_doc/ISO_TC_37_SC4_N
311_Linguistic%20Annotation%20Framework.pdf
13 See http://bioie.ldc.upenn.edu/

Acknowledgement
This work is supported by the EC BOOTStrep
Project (Ref. FP6 - 028099) and the
JISC/BBSRC/EPSRC funded UK National
Centre for Text Mining (www.nactem.ac.uk).
We thank BOOTStrep project partners for their
co-operation in the project work related to this
paper. Also, a special thank goes to Yoshinobu
Kano and Ngan Nguyen of Tsujii Lab of Tokyo
University, who provided generous help during
our work.

References:
Ananiadou, S., and J. McNaught (eds). 2006.

Text Mining for Biology and Biomedicine.
Boston, MA: Artech House.

Copestake, A., P. Corbett, P. Murray-Rust, CJ
Rupp, A. Siddharthan, S. Teufel and B.
Waldron. 2006. An architecture for language
processing for scientific texts. Proceedings of
the UK e-Science All Hands Meeting 2006.
Nottingham, UK.

Cunningham, H., D. Maynard, K. Bontcheva
and V. Tablan. 2002. GATE: A Framework
and Graphical Development Environment for
Robust NLP Tools and Applications.
Proceedings of the 40th Anniversary Meeting
of the Association for Computational
Linguistics (ACL'02), Philadelphia, US.

Fellbaum, C. (ed.). 1998. WordNet: An
electronic lexical database. Cambridge, MA:
MIT Press.

Ferrucci, D. and A. Lally. 2004. Building an
example application with the Unstructured
Information Management Architecture, IBM
Systems Journal 43(3): 455-475.

Garside, R. 1987. The CLAWS Word-tagging
System. In: R. Garside, G. Leech and G.
Sampson (eds), The Computational Analysis
of English: A Corpus-based Approach.
London: Longman.

Hudson, R. 1984. Word Grammar. Blackwell.

Ide, N. and L. Romary. 2004. International
standard for a linguistic annotation
framework. Journal of Naturaql Language
Engineering, 10:3-4. pp. 211-225.

Kim, J.D., T. Ohta, Y. Teteisi and J. Tsujii.
2003. GENIA corpus - a semantically
annotated corpus for bio-textmining.
Bioinformatics 19(suppl. 1). pp. i180-i182.

Leech, G. 1997. Introducing Corpus
Annotation. In Garside, Leech and McEnery
(eds.) Corpus Annotation – Linguistics

Information from Computer Text Corpora,
pp. 1-18.

Marcus, M.P., B. Santorini and M.A.
Marcinkiewicz. 1993. Building a large
annotated corpus of English: The PENN
TREEBANK. Computational Linguistics,
19(2):313–330.

McDonald, R., F. Pereira, K. Ribarov and J.
Hajic. 2005. Non-Projective Dependency
Parsing using Spanning Tree Algorithms. In
Proceedings of HLT-EMNLP 2005,
Vancouver, British Columbia, Canada. pp.
523 – 530.

Miyao, Y. and J. Tsujii. 2005. Probabilistic
Disambiguation Models for Wide-Coverage
HPSG Parsing. In Proceedings of ACL-2005,
Ann Arbor, Michigan. pp. 83-90.

Piao, S., D. Archer, O. Mudraya, P. Rayson, R.
Garside, A. M. McEnery and A. Wilson.
2006. A large semantic lexicon for corpus
annotation. In Proceedings from the Corpus
Linguistics Conference Series on-line e-
journal 1(1), ISSN 1747-9398.

Pollard, C. and I. Sag. 1994. Head-Driven
Phrase Structure Grammar. Chicago:
University of Chicago Press.

Tsuruoka, Y., Y. Tateishi, J.D. Kim, T. Ohta, J.
McNaught, S. Ananiadou and J. Tsujii. 2005.
Developing a Robust Part-of-Speech Tagger
for Biomedical Text, Advances in
Informatics - 10th Panhellenic Conference
on Informatics, LNCS 3746, pp. 382-392.

Yang, X., J. Su, G. Zhou and C. L. Tan. 2004a.
An NP-Cluster approach to coreference
resolution, In Proceedings of the 20th
International Conference on Computational
Linguistics (COLING04), Geneva,
Switzerland.

Yang, X., J. Su, G. Zhou and C. L. Tan. 2004b.
Improving pronoun resolution by
incorporating coreferential information of
candidates. In Proceedings of the 42nd
Annual Meeting of the Association for
Computational Linguistics (ACL04),
Barcelona, Spain. pp. 127-134.

