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Abstract

This paper describes practical issues in the framework-independent eval-
uation of deep and shallow parsers. We focus on the use of two dependency-
based syntactic representation formats in parser evaluation, namely, Carroll
et al. (1998)’sGrammatical Relationsand de Marneffe et al. (2006)’sStan-
ford Dependencyscheme. Our approach is to convert the output of parsers
into these two formats, and measure the accuracy of the resulting converted
output. Through the evaluation of an HPSG parser and Penn Treebank phrase
structure parsers, we found that mapping between different representation
schemes is a non-trivial task that results in lossy conversions that may ob-
scure important differences between different parsing approaches. We dis-
cuss sources of disagreements in the representation of syntactic structures
in the two dependency-based formats, indicating possible directions for im-
proved framework-independent parser evaluation.

1 Introduction

Despite the rapid progress made in recent years on deep linguistic parsing (Cahill
et al., 2002; Hockenmaier, 2003; Kaplan et al., 2004; Burke et al., 2004b; Clark
and Curran, 2004; Malouf and van Noord, 2004; Oepen et al., 2004; Toutanova
et al., 2004; Miyao and Tsujii, 2005), shallow phrase-structure parsers (Collins,
1997; Charniak and Johnson, 2005) are still often chosen over linguistically richer
approaches in natural language processing (NLP) research and applications where
syntactic analysis is needed. This is due in part to the perception that deep parsing
is not robust and efficient enough for handling practical tasks, and that its accu-
racy is below that of shallow parsing approaches. In addition, the advantages of
deep syntactic analysis over shallow phrase-structures, although clear to those in
the deep parsing community, has not been demonstrated convincingly to the gen-
eral NLP community. While shallow parsers may in fact be better suited for some
NLP tasks, an informed decision on that regard requires a fair comparison be-
tween different kinds of parsers, especially when they deal with different ways of
representing syntactic information. However, comparison of different parsing ap-
proaches is challenging even among deep parsers, since accuracy measurements
used in different systems are largely incompatible, making it difficult to determine
the advantages of specific deep parsing approaches. Meanwhile, the most widely
used evaluation metric in current parsing research, precision and recall of labeled
brackets, follows a view of syntax that is simplistic and at the same time quite
specific to one particular type of syntactic representation. While the use of brack-
eting precision and recall in simplified trees from the Penn Treebank (Marcus et al.,
1994) fueled much of the development of current wide-coverage data-driven pars-
ing by providing a way to evaluate parsers on a common test set, it is now too
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limited to deal with recent developments that go beyond what is represented in that
test set1. Hence, framework-independent parser evaluation is necessary not only
for informed development of NLP applications, where different types of parsers
may be more or less suited for certain NLP tasks (Clegg and Shepherd, 2007), but
also for progress in parsing research itself, where it would allow for a more direct
comparison between different parsing approaches (Clark and Curran, 2007).

This paper discusses several challenges and practical issues in framework-
independent evaluation of syntactic parsers. Specifically, we focus on two exist-
ing proposals for representing syntactic relationships between words, and exam-
ine practical issues through the evaluation of parsing accuracy of a deep parser
based on Head-Driven Phrase Structure Grammar (HPSG),Enju (Miyao and Tsu-
jii, 2005). The first representation scheme we consider isGrammatical Relations
(GR) (Carroll et al., 1998; Carroll and Briscoe, 2004; Briscoe, 2006), which aims
to provide a better parser evaluation framework than PARSEVAL measures (Black
et al., 1991) of constituent bracketing precision and recall. This scheme has been
adopted for the evaluation of RASP (Briscoe and Carroll, 2006; Briscoe et al.,
2006), shallow parsers derived from Penn Treebank (PTB) (Preiss, 2003), and re-
cently, a deep parser based on Combinatory Categorial Grammar (CCG) (Clark and
Curran, 2007). The other is theStanford Dependencyscheme (SD) (de Marneffe
et al., 2006), which was proposed for providing NLP applications with more use-
ful syntactic representations than phrase structures. Although gold standard data is
not available, a program attached to the Stanford parser (Klein and Manning, 2003)
automatically converts PTB-style phrase structures into this format. This conver-
sion is only approximate, making SD-based evaluation problematic. In addition,
the lack of detailed documentation on the specific syntactic representation choices
highlights that this format was not originally intended for parser evaluation. How-
ever, because of its recent use in the evaluation of shallow PTB-style parsers in
the biomedical domain (Clegg and Shepherd, 2007; Pyysalo et al., 2007a), and the
availability of a conversion tool that uses shallow PTB-style trees2 as input, we in-
vestigate the use of SD as a scheme for framework-independent parser evaluation.

Our basic strategy for the evaluation of Enju is to establish a program for con-
verting Enju’s output into these two formats, and measure accuracy of converted
output. We also develop a conversion program from SD to GR, which allows for
GR-based evaluation of PTB-style parsers (Collins, 1997; Charniak, 2000), since a
conversion tool from shallow PTB-style output to SD is available. We can therefore
compare the performances of Enju and shallow PTB parsers directly, in addition
to previously reported results for RASP (Briscoe and Carroll, 2006; Briscoe et al.,
2006) and the C&C CCG parser (Clark and Curran, 2007).

One might expect that format conversion is straightforward among GR, SD,

1By “test set” we refer to the set of shallow brackets extracted from the Penn Treebank data.
While the original treebank data includes richer syntactic analyses, information such as long-distance
dependencies, ellipsis, and functional tags are removed in the extraction of shallow brackets.

2We use “shallow PTB-style trees” to refer to the Penn Treebank trees with empty-nodes and
function-tags removed.



and Enju’s output, because they all represent labeled dependencies between words
and are similar in concept. In fact, however, our experiments revealed that format
conversion is not trivial. We had to implement complex mapping rules for Enju-
to-GR/SD and SD-to-GR conversion, and there remain a lot of disagreements for
which resolution is unlikely and which may obscure not just differences in perfor-
mance among individual parsers, but also differences in the strengths of general
parsing approaches.

The idea of parser evaluation across frameworks is not new, and its difficulty
has been reported repeatedly in the literature (Carroll et al., 1998; Kaplan et al.,
2004; Burke et al., 2004a; Clark and Curran, 2007). The results in this paper add
to this discussion by focusing on actual challenges in format conversion, providing
in-depth analyses of sources of format disagreements. It is our hope that such work
will provide the direction for the development of a better scheme for framework-
independent evaluation of deep and shallow parsers.

Section 2 presents an overview of the two schemes for parser evaluation. Sec-
tion 3 describes methods for conversion from Enju’s output to GR/SD, and from
SD to GR. Section 4 shows experimental results on the accuracy evaluation of Enju,
PTB parsers, RASP, and a CCG parser. Section 5 discusses sources of difficulties
in format conversion.

2 Parser Evaluation Schemes

In the context of wide-coverage deep parsing, the de facto standard metric for pars-
ing accuracy is precision/recall of labeled dependency relations such as predicate
argument dependencies (Kaplan et al., 2004; Clark and Curran, 2004; Miyao and
Tsujii, 2005). However, dependency relations used to evaluate different parsers are
based on each parser’s formalism and resources. For example, the PARC 700 De-
pendency Bank (King et al., 2003) was used for the evaluation of LFG parsers (Ka-
plan et al., 2004; Burke et al., 2004a), a CCG treebank (CCGBank) (Hockenmaier
and Steedman, 2002) was used for the evaluation of CCG parsing models (Hock-
enmaier, 2003; Clark and Curran, 2004), and HPSG treebanks, which were created
manually (Oepen et al., 2004) or derived from PTB data (Miyao et al., 2005), were
used for the evaluation of HPSG parsers (Toutanova et al., 2004; Miyao and Tsujii,
2005; Ninomiya et al., 2007; Sagae et al., 2007). Direct relationships among dif-
ferent dependency schemes are unclear, and we have no way for fair comparison
of these parsers.

One issue that must be considered in parser evaluation is that an evaluation
scheme must represent information needed by applications and cover real-world
texts, because the goal of parser development is usability in NLP applications. An-
other important issue is that the evaluation framework should account for syntactic
structures that are not tied specifically to any single formalism. For example, an
evaluation scheme should be sensitive to grammatical phenomena such as con-
trol/raising and long-distance dependencies, even though such structures are not



(ncsubj market They _)
(iobj market on)
(dobj market cable-TV)
(dobj on opportunities)
(det opportunities the)
(ncmod _ opportunities grazing)
(cmod _ opportunities seeks)
(ncsubj seeks CNN _)
(ncsubj discourage CNN _)
(dobj discourage opportunities)
(xcomp to seeks discourage)
(ncmod _ opportunities very)

Figure 1: GR annotation forThey market cable-TV on the very grazing opportuni-
ties CNN seeks to discourage.

accounted for in shallow PTB parsers. At the same time, the inclusion of such syn-
tactic phenomena must not make it unnecessarily difficult to evaluate parsers that
output shallow brackets.

Considering these issues, we focus on two dependency-based schemes,Gram-
matical Relations(GR) (Carroll et al., 1998; Carroll and Briscoe, 2004; Briscoe,
2006) and theStanford Dependency(SD) scheme (de Marneffe et al., 2006), which
were proposed outside the deep parsing community, while aiming to represent not
only surface syntactic structures but also deep structures such as long distance de-
pendencies. In what follows, we describe these schemes and compare them briefly.

2.1 Grammatical Relations (GR)

The Grammatical Relationscheme (GR) was proposed aiming at a framework-
independent metric for parsing accuracy (Carroll et al., 1998). A set of 700 sen-
tences extracted from Section 23 of the Penn Treebank (the same set as the PARC
700 Dependency Bank) was manually annotated and made publicly available as
gold standard data (Briscoe and Carroll, 2006), in addition to an older set of 500
sentences from the SUSANNE corpus3. While this evaluation scheme is not as
widely used as PARSEVAL, it has recently gained some traction as a more framework-
independent alternative, and has been used in the evaluation of parsers including
RASP (Carroll and Briscoe, 2004; Briscoe and Carroll, 2006; Briscoe et al., 2006)
and the C&C CCG parser (Clark and Curran, 2007). Preiss (2003) reported GR-
based evaluation of PTB parsers including the Collins parser (Collins, 1997) and
the Charniak parser (Charniak, 2000), although the SUSANNE-based gold data
was used, and the results are not directly comparable to the results in this paper,
where we use the data based on the PARC 700 selection of Penn Treebank sen-
tences.

3http://www.informatics.sussex.ac.uk/research/groups/nlp/carroll/greval.html.



Figure 1 shows an example of GR annotation. GR represents labeled syntactic
dependencies between words. For example,ncsubj means a non-clausal subject
(e.g. (ncsubj market They ) ), dobj indicates a direct object (e.g.(dobj

market cable-TV) ), andncmod expresses a non-clausal modifier (e.g.(ncmod

opportunities grazing) ). Most relations are binary, while a few relation
types have additional slots that represent subtypes of the relations. For example,
(xcomp to seeks discourage) means thatdiscourageis a to-infinitival com-
plement ofseeks. Refer to Briscoe (2006) for the definition of these relation types.

GR annotations are almost purelysyntacticand therefore lack the means to
evaluate the true potential of deep linguistic parsers that compute relationships
based on semantics. However, it should be noted that GR represents non-local
dependencies such as control/raising and movement. In this example,(ncsubj

discourage CNN ) indicates a control relation,(dobj discourage oppor-

tunities) expresses a moved object ofdiscourage, and(cmod opportuni-

ties seeks) means a relation between a relative clause and its antecedent. Since
these relations are not explicitly represented by PTB parsers, this scheme may serve
as a starting point in the identification of the added benefits of deep parsing and the
discussion of problems in framework-independent evaluation. On the other hand,
identifying most of the relationships in the GR scheme in the output of shallow
phrase structure parsers requires matching of tree patterns, which makes it chal-
lenging to evaluate those parsers.

Relation types in the GR scheme are arranged in a hierarchy. Upper types rep-
resent more generalized and coarse-grained relations. This hierarchy is used for
partial matching of relation types, which is intended for reducing disagreements
involving relation types. For example, when a parser outputs(ncmod market

on) , where the gold standard relation is(iobj market on) , this output is re-
garded as incorrect at the leaf level, but judged as correct at upper levels,arg mod

anddependent . This matching in the hierarchy is considered in scoring as de-
scribed below.

Standard metrics for the GR scheme aremicroaveragedandmacroaveraged
scores. Microaveraged scores are similar to standard precision/recall/f-score, but
take accuracy of non-leaf relation types into consideration. For example,ncmod

is a subtype ofmod, arg mod, anddependent . A singlencmod dependency is
regarded as expressing these four relations, and correctness of each of these rela-
tions is counted. Hence, as indicated above, disagreements of relation types are
discounted, because higher level types are easier to identify. In general, microav-
eraged scores are higher than the accuracy of leaf relation types. A macroaveraged
score is an average of the accuracy for each relation type, and frequencies of re-
lation types are ignored. Hence, infrequent relation types affect macroaveraged
scores. A program for computing microaveraged/macroaveraged scores is publicly
available4. We also report the overall accuracy of leaf relation types only, which is
the same metric used in our evaluation using SD.

4http://www.informatics.sussex.ac.uk/research/groups/nlp/carroll/greval.html



nsubj(market-2, They-1)
dobj(market-2, cable-3)
det(opportunities-8, the-5)
amod(opportunities-8, very-6)
nn(opportunities-8, grazing-7)
prep_on(market-2, opportunities-8)
nsubj(seeks-10, CNN-9)
rcmod(opportunities-8, seeks-10)
aux(discourage-12, to-11)
xcomp(seeks-10, discourage-12)

Figure 2: SD annotation forThey market cable-TV on the very grazing opportuni-
ties CNN seeks to discourage.

2.2 Stanford Dependency (SD) scheme

TheStanford Dependency(SD) scheme was originally proposed for providing de-
pendency relations that are more useful for applications than phrase structures
(de Marneffe et al., 2006). This scheme was designed based on Carroll et al.
(1998)’s grammatical relations and King et al. (2003)’s dependency bank, and
modified to represent more fine-grained and semantically valuable relations such
as apposition and temporal modification, while at the same time leaving out certain
relations that are particularly problematic for the parsers it was intended to work
with. Although no hand-annotated data is available, a program to convert PTB-
style phrase structures into SD relations is available as part of the Stanford Parser5.
That is, in principle, any PTB-style treebank can be converted into SD gold stan-
dard data. In practice, however, the conversion from phrase structure trees to SD
is only approximate, and converting gold standard phrase structure trees results in
only partially correct SD annotations. Unfortunately, the accuracy of these anno-
tations is unknown. This scheme was recently used for the evaluation of shallow
PTB-style parsers in the biomedical domain (Clegg and Shepherd, 2007; Pyysalo
et al., 2007a), using GENIA (Kim et al., 2003) and BioInfer (Pyysalo et al., 2007b)
as sources of gold standard PTB-style data.

Figure 2 shows an example of SD annotation for the same sentence as Figure 1.
SD looks very similar to GR, and represents many equivalent relations such as
nsubj(market-2, They-1) , dobj(market-2, cable-3) , andnn(oppor-

tunities-8, grazing-7) . The example also includes long-distance depen-
dencies, but they are not as explicit as in GR, and often not as reliable. Here,
xcomp(seeks-10, discourage-12) indicates a control relation betweenseeks
anddiscourage, andrcmod(opportunities-8, seeks-10) expresses a rela-
tion between a relative clause and its antecedent. However, relations indicating
thatCNN is the subject ofdiscourageandopportunitiesis the direct object ofdis-
courageare not represented. Refer to de Marneffe et al. (2006) for details of these

5http://nlp.stanford.edu/software/lex-parser.shtml



(ncsubj ordered Regulators _)
(ncsubj stop CenTrust _)
(ncsubj buying CenTrust _)
(ncmod _ ordered also)
(xcomp to ordered stop)
(xcomp _ stop buying)
(dobj buying stock)
(det stock the)
(passive preferred)
(ncsubj preferred stock obj)
(ncmod _ stock preferred)
(ncmod prt buying back)
(dobj ordered CenTrust)

nsubj(ordered-3, Regulators-1)
advmod(ordered-3, also-2)
dobj(ordered-3, CenTrust-4)
aux(stop-6, to-5)
xcomp(ordered-3, stop-6)
partmod(stop-6, buying-7)
prt(buying-7, back-8)
det(stock-11, the-9)
amod(stock-11, preferred-10)
dobj(buying-7, stock-11)

Figure 3: GR (left) and SD (right) forRegulators also ordered CenTrust to stop
buying back the preferred stock.

relation types, and note that while some of these relations are described as part of
the SD scheme, they are not implemented in the provided conversion software.

Although SD relation types are also organized in a hierarchy, it is intended for
convenience in use by applications, and they are not aimed at parser evaluation
purposes. Hence, we use standard precision, recall, and f-score as metrics for SD-
based evaluation.

2.3 Comparison of the two schemes

As noted above, and illustrated in Figure 3, the GR and SD schemes are very sim-
ilar in concept, and they represent equivalent dependencies in many cases. In this
example, they share subject/object relations such as(ordered, Regulators), clausal
complements such as(ordered, stop), and modifiers such as(ordered, also). How-
ever, disagreements can also be found; for example,preferred is recognized as
a past-participle modifier in GR (which is indicated as(ncsubj preferred

stock obj) ), while it is an adjectival modifier in SD (which is represented as
amod(stock-11, preferred-10) ). This comes from a difference in the part-
of-speed (POS) ofpreferred. Representations of long-distance dependencies are
also different, as previously mentioned. In this example, the subject ofstopand
buying is expressed in GR, while not in SD. Finally, we once again note that SD
data converted from gold standard PTB data includes errors: in figure 3buyingis
incorrectly recognized as a participial modifier tostop.

An advantage of GR is the availability of hand-annotated data, although the
data size is relatively small. Another advantage is that partial matching of relation
types may reduce the labor of format conversion. An advantage of SD is that we
can use any data annotated with the more common PTB annotation policy. In ad-
dition, evaluation of PTB parsers (Collins, 1997; Charniak and Johnson, 2005) is
convenient because software for format conversion is already available. However,



conversion errors make the evaluation only approximate, and the lack of a detailed
definition of relation types is an obstacle to further development of conversion
rules. This leads to a greater problem in framework-independent evaluation, since
many of the same conversion errors are present in the SD data converted from gold
standard PTB data and the converted output of shallow PTB-style parsers. For ex-
ample, the SD data used in experiments includes many relations assigned “dep”,
which is the most underspecified relation type. This relation is chosen as output
when the conversion program could not determine a relation type properly. In fact,
more than 5% of relations are assigned “dep”, meaning that the actual upper bound
for PTB-to-SD conversion is below 95%. Because these errors are undocumented,
in practice they result in inflated accuracy figures for shallow PTB parsers when
compared to the accuracy of parsers that use other formats that must be converted
with different software (and may contain a number of different conversion errors).
In other words, the accuracy of parsers that use PTB-like output is overestimated,
and the accuracy of parsers that use other output formats is likely to be underesti-
mated.

3 Format Conversion

Our strategy for format conversion is based on post-processing. That is, we convert
the output of parsers without changing the original parsers. During the develop-
ment of conversion programs, we validate our progress using a development set
of gold standard data in the format used by each parser, i.e., we run the conver-
sion on parts of the HPSG treebank (Miyao et al., 2005) and the Penn Treebank.
Automatic parsing results are used in the final evaluation. This is because accu-
racy obtained by converting gold standard data indicates the quality of conversion,
and we can separate issues of format conversion from actual parsing errors. Accu-
racy figures from converted gold standard are also meaningful as upper-bounds of
scores obtained with these evaluation schemes.

3.1 From Enju’s XML format to GR/SD

We implemented conversion rules for the Enju XML format (Miyao, 2007). This
format represents constituent structures and predicate argument structures in an
XML format. To start with, we mapped predicate argument relations into GR/SD.
Figure 4 shows an example of the XML format of Enju, and its mapping to GR.
Arguments oforderedandstopcan be mapped into GR in a fairly straightforward
manner. Relation types are determined depending on argument labels (e.g.ARG1

andARG2), categories and POS tags of predicate words (e.g.VBD), and syntactic
categories of argument constituents (e.g.NPandVP).

However, this simple method produced poor accuracy, mainly because of non-
trivial disagreements between the formats. Hence, we had to implement heuristic
conversion rules to fix these disagreements.



Figure 4: Enju XML format and mapping to GR

Figure 5: Conversion of lexical heads

Figure 6: Conversion of coordination

It is often the case that certain types of relations are expressed in one format,
but not in the other. For example, GR has “text adjunct” as a distinct relation, while
Enju (and SD) does not distinguish such a relation type from others. Text adjunct is
a text region delimited by some punctuation (Briscoe, 2006). Our conversion pro-
gram outputs parentheses and appositive relative clauses as text adjuncts, but does
not identify other text adjuncts. Another example is that GR does not represent in-
ternal structures of named entities, while Enju does. Hence, we detect text regions
of named entities using simple patterns on POS tags, and remove dependencies
inside named entity regions.

A major source of format disagreements was differences of lexical heads. Fig-
ure 5 shows an example of a temporal modifier. In Enju’s output (left), the lexical
head often years agois ago, while in the GR scheme (right), it isyears. Hence,
our conversion rule changes lexical heads of such temporal modifiers. Similar con-
version is applied to such constructions as number expressions.

Coordination was another major source of disagreements. Figure 6 shows an
example of VP coordination. Enju outputs subject relations of conjunct VPs sep-



arately (left), while in GR the head of coordinated phrase is a coordinator and it
has a subject relation (right). We therefore reduce two subject relations in Enju’s
output into one.

We also found systematic disagreements in specific constructions including
relative clauses, quotations, copulas, and small clauses. For example, GR and SS
represent a syntactic relation between the head verb of a relative clause and its
antecedent. However, Enju does not output such relations explicitly, and instead,
expresses a relation between a relativizer and its antecedent. We therefore devel-
oped conversion rules specialized to these constructions.

3.2 From SD to GR

Although the typed dependencies in the Stanford Dependency scheme are superfi-
cially similar to those in the Grammatical Relations scheme, conversion from SD
to GR is problematic for many of the same reasons cited above in our discussion
on conversion from Enju’s XML format. However, a more serious problem with
the use of SD (and SD to GR conversion) for parser evaluation is the lack of a gold-
standard SD corpus. In our experiments, SD annotations are obtained from shallow
PTB-style phrase-structure trees (which correspond to PTB trees with empty-node
and function-tag information removed), using a conversion program included in
the Stanford Parser. As can be expected, given our present discussion about parser
format conversion, the PTB to SD conversion program is far from perfect. In addi-
tion to noticeable errors in the output of the conversion program, more than 5% of
the dependencies are left completely underspecified, labeled only with the general
dep type (which does not correspond to a specific grammatical relation, indicating
only a head-dependent relation between two words). However, the accuracy of this
conversion is not known, and cannot be easily computed without a gold-standard
corpus for SD.

Conversion from SD to GR followed a similar pattern than the one described
above for conversion from Enju XML to GR. First, a simple mapping between cor-
responding relations was attempted. As was the case with Enju, the resulting con-
version was poor for all but the simplest relations (det andaux ). A telling example
is the conversion of SD’snsubj to GR’sncsubj . Although the two relations ap-
pear very similar, a number of undocumented differences make the conversion less
straightforward than a simple mapping. For example, sentences involving the cop-
ula are treated differently by the two schemes, with GR attaching the subject as a
dependent of the verb, and SD attaching the verb as a dependent of the predicate
nominal. While some additional information required by GR’sncsubj (such as
whether the subject position is inverted, or the initial relation of the subject) can
be determined reliably by looking at aspects of the SD structure that go beyond
the nsubj dependency, some information (such as subjects in control structures)
simply cannot be determined from SD structures. Although de Marneffe et al.’s
description of the SD scheme seems to indicate that enough information for such a
conversion should be available, the actual implementation of the SD scheme in the



Stanford Parser lacks information relating to, for example, control structures and
long-distance dependencies. This is understandable, given the difficulty in pro-
ducing such information from shallow PTB-style trees. However, undocumented
differences between the description and implementation of SD make the conver-
sion even more difficult. A reasonably accurate conversion to GR’sncsubj was
finally obtained with the use of development data, by inspecting specific examples
annotated in each format. However, the efficacy of this approach varied in other
types of relations, especially since the amount of development data available was
limited.

One of the most problematic aspects of SD to GR conversion is the distinction
of complements from adjunct, especially in prepositional phrases. SD does not
assign a grammatical function to PPs, making it difficult to determine the correct
relation in the GR scheme. As a result, the identification of indirect objects (iobj )
has low accuracy compared to other relations. Of course, this also affects the accu-
racy of non-clausal modifiers. Another source of conversion errors is coordination,
which is annotated in such a way in SD that its scope cannot be determined. As
with Enju XML, recognizing the text adjunct (ta ) relation is challenging, since it is
not represented in the SD scheme. Although issues relating to headedness were less
problematic in SD to GR conversion than in Enju XML to SD/GR, there were still
differences, probably related to the use of an automatic conversion from the orig-
inal PTB data to SD, compared to the manual annotation of the GR gold-standard
data.

Finally, we reiterate that the conversion errors in our conversion from SD to
GR are added on top of the PTB to SD conversion errors made by the Stanford
parser implementation when a complete PTB to GR conversion is performed. For
this reason, the GR results we obtain from parsers that produce PTB-style output
do not do these parsers justice. While it is possible that a one-step conversion,
from shallow PTB-style trees directly to GR, could produce more accurate results,
an attempt by Preiss (2003) shows that this is not guaranteed to be much more
successful, or at least is far from trivial. While our PTB to GR conversion does
not provide completely fair grounds for comparison between shallow PTB-style
parsers and Enju, a deep parser, it does serve to highlight some of the challenges
in attempting such a comparison.

4 Experiments

Table 1 shows the sizes of the data sets used in experiments. For the development
of conversion rules, we used 140 sentences extracted from the GR-annotated ver-
sion of the PARC 700 Dependency Bank and the same set of sentences annotated
automatically with SD (by running the Stanford Parser’s automatic conversion on
the corresponding Penn Treebank gold standard trees). For the final test, we used
560 sentences of the GR data and the same set of SD-annotated sentences. The
GR data for the final test is the same set as previous works on GR-based evaluation



Table 1: Statistics of test data

scheme # sent. # rels. # avg. rels/sent. # rel. types
GR 560 10386 18.55 18
SD 560 9343 16.68 40

(Briscoe and Carroll, 2006; Briscoe et al., 2006; Clark and Curran, 2007).
The parsers we evaluate are Enju 2.26, Charniak and Johnson (2005)’s rerank-

ing parser (C&J parser), Charniak (2000)’s parser, and the Stanford parser (Klein
and Manning, 2003). We also show previously reported microaveraged and macroav-
eraged scores for the GR evaluation of RASP (Briscoe and Carroll, 2006; Briscoe
et al., 2006) and the C&C CCG parser (C&C parser) (Clark and Curran, 2007).
Enju 2.2 includes a feature forest model (Miyao and Tsujii, 2005) and an extremely
lexicalized model (Ninomiya et al., 2007), while excluding more advanced tech-
nologies such as deterministic parsing (Matsuzaki et al., 2007) and combination
with shallow dependency parsing (Sagae et al., 2007).

Tables 2 and 3 show the accuracy of Enju and the PTB-style parsers obtained
after the format conversion. In these tables, “auto” denotes figures obtained from
automatic parsing results, while “gold” indicates accuracy figures obtained by con-
verting gold standard data (establishing upper-bounds for the corresponding “auto”
figures). In the case of Enju, “gold” figures are obtained by converting the HPSG
treebank, and indicate the upper bound in accuracy in these evaluation schemes.
Because the HPSG treebank lacks several sentences due to failures in the PTB-
to-HPSG conversion (Miyao et al., 2005) that created the HPSG treebank, we ex-
cluded missing sentences from the evaluation of “gold”. The evaluation of “auto”
includes all sentences in the test data. For the evaluation of PTB parsers on GR,
we applied our SD-to-GR conversion program to the output of the existing PTB-
to-SD conversion software. In this case, “gold” indicates the accuracy obtained in
the two-step conversion from PTB to GR. The “gold” accuracy for SD is 100%,
because in SD evaluations we take the output of the Stanford Parser’s PTB-to-SD
conversion to be correct. Although we know the conversion is in fact not 100% cor-
rect, in our SD-based evaluation we do take the conversion of gold standard PTB
trees to be our gold standard SD corpus, since a manually curated gold standard
corpus is not available.

First, we note that these results show that the accuracy levels obtained by con-
verting gold standard data are fairly low when format conversion is needed. This
means that format conversion is far from perfect. For both GR and SD evaluation of
Enju, “gold” accuracy figures are slightly higher than 80%, indicating that nearly
20% of dependencies cannot be converted properly. This is discouraging because
reported accuracy levels of shallow and deep parsing are around 90%. However,

6Available athttp://www-tsujii.is.s.u-tokyo.ac.jp/enju/



Table 2: Accuracy for GR

gold auto
precision recall f-score precision recall f-score

Enju 84.27 83.67 83.97 80.60 78.74 79.66
C&J parser 78.60 68.51 73.21 75.86 62.92 68.79
Charniak parser 78.60 68.51 73.21 75.18 62.97 68.53
Stanford parser 78.60 68.51 73.21 70.88 60.24 65.13

this is an indication that previously reported accuracy figures might be inflated.
The accuracy of “gold” PTB conversion to GR is even worse, since in this case
we do suffer from the errors in PTB-to-SD conversion, and the errors in the subse-
quent SD-to-GR conversion. As we have described, these schemes are superficially
similar, but this result reveals the difficulty of format conversion even between SD
and GR. A possible reason is that a significant portion of GR dependencies could
not be produced accurately from shallow phrase structures, which resulted in lower
recall.

Results for “auto” reveal that Enju outperforms PTB parsers significantly in our
GR evaluation, which is, as previously noted, unfair to the PTB parsers that suffer
a double penalty in conversion. In our SD evaluation, which in turn heavily favors
the PTB parsers and penalizes Enju, as previously discussed, the PTB parsers do
have higher accuracy than Enju. It is then obvious that these contradictory results
are heavily affected by the quality of format conversion, and this highlights how
challenging (and even misleading) cross-framework evaluations can be. If we fo-
cus on an argument on the neutral nature of the GR scheme, we might be able to
say that Enju is better in recognizing deeper dependency relations. However, this
result relies on SD-to-GR conversion after PTB-to-SD conversion for PTB parsers,
and it is likely that the figures for PTB parsers may be improved by directly con-
verting their PTB-style to GR. However, it should be noted that our results for PTB
parsers are better than the results reported by Preiss (2003) that implemented direct
conversion from PTB to GR, although actual figures are not comparable because
the test data is different, and the test set used by Preiss was in a different domain.

Tables 4 and 5 show microaveraged and macroaveraged scores for GR, respec-
tively. We also show previously reported results for RASP (Briscoe and Carroll,
2006; Briscoe et al., 2006) and the C&C parser (Clark and Curran, 2007), which
used the same evaluation scheme. Table 6 shows the accuracy of Enju for each
relation type. As described in Section 2, microaveraged scores are higher than the
accuracy in Table 2, which means that disagreements of relation types are reduced
to some extent. However, nearly 13% of relations still cannot be produced. Sim-
ilar results were also reported for the CCG parser, and this suggests that format
disagreements may not be a simple matter of relation type mismatch.

Although the problem of format conversion remains, and we do not claim to



Table 3: Accuracy for SS

gold auto
precision recall f-score precision recall f-score

Enju 83.43 81.44 82.42 77.38 74.54 75.93
C&J parser 100.00 100.00 100.00 88.36 88.45 88.40
Charniak parser 100.00 100.00 100.00 87.05 87.10 87.07
Stanford parser 100.00 100.00 100.00 85.36 83.16 84.25

Table 4: Microaveraged scores for GR

gold auto
precision recall f-score precision recall f-score

Enju 87.49 86.79 87.14 83.57 81.73 82.64
C&J parser 80.84 69.16 74.54 79.08 67.46 72.81
Charniak parser 80.84 69.16 74.54 78.41 67.68 72.65
Stanford parser 80.84 69.16 74.54 74.76 64.83 69.44
RASP — — — 77.66 74.98 76.29
C&C parser 86.86 82.75 84.76 82.44 81.28 81.86

Table 5: Macroaveraged scores for GR

gold auto
precision recall f-score precision recall f-score

Enju 81.19 75.70 78.35 77.87 71.10 74.33
C&J parser 62.64 49.30 55.17 60.20 47.97 53.39
Charniak parser 62.64 49.30 55.17 59.39 48.08 53.14
Stanford parser 62.64 49.30 55.17 57.93 46.81 51.78
RASP — — — 62.12 63.77 62.94
C&C parser 71.73 65.85 68.67 65.61 63.28 64.43

have achieved the best possible results with the PTB parsers, Tables 4 and 5 show
that the accuracy of Enju is significantly higher than those of other parsers eval-
uated using the same test set, including PTB parsers, RASP, and the C&C parser.
In particular, Enju achieved impressively higher macroaveraged scores, indicating
that Enju is able to recognize infrequent relation types accurately.



Table 6: Relation type-wise accuracy

gold auto
precision recall f-score precision recall f-score

ncmod 77.01 85.17 80.88 72.82 79.42 75.98
xmod 60.48 61.21 60.84 51.83 55.62 53.66
cmod 75.44 55.48 63.94 66.67 52.38 58.67
pmod 0.00 0.00 0.00 0.00 0.00 0.00
det 96.35 97.85 97.09 94.24 94.49 94.37
ncsubj 88.39 86.46 87.41 83.23 81.02 82.11
xsubj 100.00 57.14 72.73 75.00 42.86 54.55
csubj 75.00 100.00 85.71 100.00 100.00 100.00
dobj 91.80 93.53 92.66 88.35 89.36 88.85
obj2 56.52 68.42 61.90 61.90 65.00 63.41
iobj 82.24 60.08 69.43 82.25 58.33 68.26
xcomp 82.48 78.22 80.29 80.90 71.13 75.70
ccomp 87.39 79.39 83.20 81.92 73.45 77.45
pcomp 100.00 63.64 77.78 94.12 66.67 78.05
aux 95.88 95.36 95.62 94.66 92.77 93.70
conj 89.93 84.74 87.26 81.17 73.31 77.04
ta 61.54 25.91 36.47 59.46 22.68 32.84

5 Analysis of Format Disagreements

In what follows, we discuss sources of disagreements we found through our ex-
periments. Figure 7 shows classification of dependency mismatches between the
converted HPSG treebank and GR gold standard. That is, these come from format
disagreements, and do not include parsing errors.

Text adjunct As described in Section 3, GR has a relation type calledtext ad-
junct, which is not explicitly identified by Enju. Although our conversion program
tries to produce such relations, Table 7 shows that a significant number of text
adjuncts were not recognized correctly.

Argument/modifier distinction It is widely recognized that a clear distinction
between arguments and modifiers is difficult even for humans. In fact, there are
no formal criteria for argument/modifier distinction in GR/SD annotation, and they
are different even between GR and SD. Our conversion program approximately
reproduces their intended distinctions, but a significant portion of them remain
mismatched. One reason is that Enju outputs most prepositional phrases as modi-
fiers. However, we found many other cases such as a distinction between adverbial
clauses and clausal complements.



Table 7: Classification of dependency disagreements

Remaining disagreements 107
text adjunct 35
argument/modifier distinction 34
lexical head 25
POS 7
attachment 6

Conversion errors 36
named entity 15
number expression 6
coordination 6
others 9

Limitation of the HPSG treebank 14
noun phrase structure 10
others 4

Errors in the gold standard 13

Lexical head Although headedness is considered an agreed upon notion of syn-
tactic structures, it is not obvious for a certain portion of syntactic constructions.
For example, the head of “30.5 million” is “30.5” in GR and SD, while it is “mil-
lion” in Enju. This example is rather simple and could be converted easily, but the
important implication here is that there is a potential disagreement in headedness
in many different types of constructions such as this one. This is critical because
dependency-based evaluation heavily relies on the identification of lexical heads,
and disagreements on heads may unfairly decrease apparent accuracy.

A similar problem is the necessary portion of arbitrary annotation policies that
is inherent in this type of exercise. A typical example is the dependency structure
of “more than 2%”. In GR, “more” is the head of this phrase, and “than 2%”
is a modifier of “more”. However, in SD and Enju, “more than 2” constitutes a
quantifier phrase, and “more” modifies “%”. Either of these is acceptable, and we
should regard this as a difference of annotation policies.

Part of Speech (POS) While the POS tags of some words are legitimately am-
biguous, their differences significantly hurt accuracy because different relation
types are assigned to words with different POS tags. For example, in Figure 3,
GR recognizes “preferred” as a past participle, while SD (and Enju) treats it as an
adjective, which results in assigning different relation types.

Conversion errors Our conversion rules for named entities, number expressions,
coordination, and others did not work properly in some cases, and conversion errors



remained. We expect that these errors can be reduced with further improvement of
our conversion rules, although this complicates the process of format conversion.

Limitations of the HPSG treebank The HPSG treebank does not represent
some syntactic structures correctly. An example is internal structures of noun
phrases. In the HPSG treebank, most noun phrases are annotated as right-branching
trees, which are not necessarily correct. This is because the HPSG treebank was
translated from the Penn Treebank, in which the internal structure of noun phrases
is not annotated.

Errors in the gold standard We found a few cases that we simply disagreed or
did not understand the intention of the GR gold standard annotation. Clearly, this
type of problem is much more serious in our SD evaluation, because the SD eval-
uation sets are automatically converted from PTB, and they contain unjustifiable
relations caused by imperfect conversion.

6 Summary and Future Directions

In this paper, we described an attempt to perform framework-independent parser
evaluation. We focused on two dependency-based schemes for parser evaluation,
namely, GR and SD, and evaluated the accuracy of an HPSG parser and shallow
PTB-style parsers by converting their output into the dependency formats in these
two schemes. In a series of experiments, we found that non-trivial conversion of
parser output format was required. Experimental results showed that nearly 20%
of dependency relations are problematic even when we converted a gold-standard
HPSG treebank, demonstrating the difficulty of format conversion. In practice, it is
difficult to have reliable conversion between different dependency representations,
even between GR and SD, which are superficially similar. While we identified
several of the major problems in our format conversion programs, their solution is
unclear and would likely require a more complex conversion process. These re-
maining problems may obscure the results of parser evaluation. In fact, the results
we obtain using the two evaluation schemes do not agree, confirming previous find-
ings that framework-independent evaluation remains a challenge. Our experience
suggests that GR evaluation is a step in the right direction, but a more accurate
conversion procedure from PTB-style output to GR format is necessary.

From these observations, we conclude that a possible direction for improved
parser evaluation includes machinery for dealing with multiple valid heads and de-
pendency types in gold standard data. Following the discussion in Section 5, it is
important to reduce the disagreements in relation types and lexical heads. While
GR provides a partial solution to the former through its hierarchy of relations, a
significant portion of remaining problems are relation type mismatches caused by
the argument/modifier distinction, text adjuncts, and ambiguity of POS tags. For



the latter, a possible solution would be to annotate multiple candidate dependen-
cies, any of which may be matched to parser output. It may also be desirable to
determine the relative importance of relations in the evaluation. For example, in
current schemes, the attachment of prepositional phrases is weighted identically to
the attachment of determiners. While this is addressed in GR evaluation by hav-
ing separate figures for precision and recall of each relation, complex results that
include several dimensions can be difficult to interpret. Another example involves
dependencies concerning idiomatic expressions, which may need to be excluded
from the evaluation, since their structures vary significantly in different frame-
works.

While this paper focused on parser evaluation at an intermediate representation,
another direction is evaluation in end-to-end applications, such as information ex-
traction and machine translation. In application-oriented, or task-based evaluation,
some differences between parsers might be obscured because many other compo-
nents contribute to overall system performance. However, this type of evaluation
is indispensable for further understanding of how the characteristics of specific
parsers make them more suitable in certain situations, and even to validate the
results of more straightforward synthetic evaluations using gold-standard parsed
data.
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