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Abstract

Background: Term identification is the task of grounding ambiguous mentions of biomedical named

entities in text to unique database identifiers. Previous work on term identification has focused on studying

species-specific documents. However, full-length articles often describe entities across a number of

species, in which case resolving the ambiguity of model organisms in entities is critical to achieving

accurate term identification.

Results: We developed and compared a number of rule-based and machine-learning based approaches

to resolving species ambiguity in mentions of biomedical named entities, and demonstrated that a hybrid

method achieved the best overall accuracy at 71.7%, as tested on the gold-standard ITI-TXM corpora. By

utilising the species information predicted by the hybrid tagger, our rule-based term identification system

was improved significantly by up to 11.6%.

Conclusions: This paper shows that, in the context of identifying terms involving multiple model

organisms, integration of an accurate species disambiguation system can significantly improve the

performance of term identification systems.
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Background

The exponential growth of the amount of scientific literature in the fields of biomedicine and genomics has made it

increasingly difficult for scientists to keep up with the state of the art. The TXM project [1], a three-year project

which aims to produce software tools to aid curation of biomedical papers, targets this problem and exploits natural

language processing (NLP) technology in an attempt to automatically extract enriched protein-protein interactions

(EPPI) and tissue expressions (TE) from biomedical text.

A critical task in TXM is term identification (TI), the task of grounding mentions of biomedical named entities to

identifiers in referent databases. TI can be seen as an intermediate task that builds on the previous component in an

information extraction (IE) pipeline, i.e., named entity recognition (NER), and provides crucial information as input to

the more complex module of relation extraction (RE). The structure of the IE pipeline resembles a typical curation

process by human biologists. For example, when curating protein-protein interactions (PPIs), a curator would first

mark up the protein mentions in text, and then identify the mentions by finding their unique identifiers from standard

protein databases such as RefSeq [2], and finally curate pairs of IDs as PPIs.

TI is a matching and disambiguation process [3], and a primary source of ambiguity lies in the model organisms of

the terms. In curation tasks, one often needs to deal with collections of articles that involve entities of a large variety

of species. For example, our collection of articles from PubMed and PubMed Central involve over 100 model

organisms. Also, it is often the case that more than one species appear in the same document, especially when the

document is a full-length article. In our dataset, 74% of the articles concern more than one organism. In many

standard databases, such as RefSeq and SwissProt, homolog proteins in different species, which often contain nearly

identical synonym lists, are assigned distinct identifiers. This makes biomedical terms even more polysemous and

hence species disambiguation becomes crucial to TI. For example, querying RefSeq with the protein mention plk1

resulted in 98 hits. By adding a species to the query, e.g. mouse, one can significantly reduce the number of results to

two.

The most relevant work to ours are the Gene Normalisation (GN) tasks [4, 5] in the BioCreAtIvE I & II

workshops [6, 7]. The data provided in the GN tasks, however, were species-specific, which means that the lexicons

and datasets were concerned with single model organisms and thus species disambiguation was not required. A few

participating systems, however, integrated a filter to rule out entities with erroneous species [8, 9], which were

reported to be helpful. Another difference between our task and the BioCreAtIvE GN ones is that we carry out TI on

entity level while GN on document level.

It is worth mentioning that the protein-protein interaction task (IPS) in BioCreAtIvE II has taken into account species

ambiguity. The IPS task resembles the work-flow of manual curation of PPIs in articles involving multiple species,
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and to accomplish the task, one would require a full pipeline of IE systems, including named entity recognition, term

identification and relation extraction. The best result for IPS [10] was fairly low at 28.85% F1, which reflects the

difficulty of the task. Some participants of IPS have reported (e.g., [11]) that resolving species ambiguity was one of

the biggest challenges. Our analysis of the IPS training data revealed that the interacting proteins in this corpus

belong to over 60 species, and only 56.27% of them are human.

As noted in previous work [10–14], determining the correct species for the protein mentions is a very important step

towards TI. However, as far as we know, there has been little work in species disambiguation and in to what extent

resolving species ambiguity at an entity level can help TI.

Results and discussion
Species disambiguation

The species tagger was developed on the ITI TXM corpora [15], which were produced as part of the TXM project [1].

We created two corpora in slightly different domains, EPPI and TE. The EPPI corpus consists of 217 full-text papers

selected from PubMed and PubMed Central and domain experts annotated all documents for both protein entities and

PPIs, as well as extra (enriched) information associated with the PPIs and normalisations of the proteins to publicly

available ontologies. The TE corpus consists of 230 full-text papers, in which entities such as proteins, tissues, genes

and mRNAcDNAs were identified, and a new tissue expression relation was marked up.

We used these corpora to develop a species tagging system. The biomedical entities in the data were manually

assigned with standard database identifiers, where genes were assigned with EntrezGene IDs, and proteins and

mRNAcDNAs with RefSeq IDs. Hence it was straightforward to obtain their species IDs through the mappings

provided by EntrezGene and RefSeq. In more detail, proteins, protein complexes, genes and mRNAcDNAs in both

EPPI and TE datasets were assigned with NCBI Taxonomy IDs (TaxIDs) [16], to denote their species. The EPPI and

TE datasets have different distributions of species. For example, the entities in the EPPI training data belong to 118

species with human being the most frequent at 51.98%, and those in the TE training set are across 67 species and

mouse was the most frequent at 44.67%.

To calculate the inter-annotator-agreement, about 40% of the documents were doubly annotated by different

annotators. The averaged F1 scores of species annotation on the doubly annotated EPPI and TE datasets are 86.45%

and 95.11%, respectively, indicating that human annotators have high agreement when assigning species to

biomedical entities.

To assess how much species ambiguity accounts for the overall ambiguity in biomedical entities, we estimated the

averaged ambiguity rates for the protein entities in the TXM datasets, without and with the species information.
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Suppose there are n unique protein mentions in a dataset. First, we look up the RefSeq database by exact match with

every unique protein mention mi, where i ∈ {0..n− 1}, and for each mi we retrieve two lists of identifiers: Li and

L′i, where Li consists of all identifiers and L′i only contains the identifiers whose model organism matches the

manually tagged species of the protein mention. The ambiguity rates without and with species are computed byPn−1
i=0 |Li|

n and
Pn−1

i=0 |L′i|
n , respectively. Table 1 shows the ambiguity rates on the EPPI and TE datasets.

Using the ITI TXM corpora, we first devised a number of rule-based species disambiguation systems. It is intuitive

that a species word that occurs near an entity (e.g., “mouse p53”) is a strong indicator of its species. To assess this

intuition, we developed a set of rules using heuristics and the species words detected by a species word tagger (to be

described later).

• PreWd: If the word preceding an entity is a species word, assign the species indicated by that word to the entity.

• PreWd Sent: If a species word occurs to the left of an entity and in the same sentence, assign the species

indicated by that word to the entity.

• Prefix: If an entity has a species-indicating prefix, e.g., mSos-1, then tag the species to that entity.

• Spread: Spread the species of an entity e to all entities in the same document that have the same surface form

with e. This rule must be used in conjunction with the other rules.

• Majority Vote: Count the species words in a document and assign as a weight to each species the proportion of

all species words in the document that refer to the species. For example, if there are N species words in a

document and Nhuman are associated with human, the human species weight is calculated as Nhuman

N . Tag

all entities in the document the species with the highest weight, defaulting to human in the case of a tie. This

rule was used by default in the rule-based TI system, described later in this paper.

Table 2 shows the results of species tagging when the above rules were applied. As we can see, the precision of the

systems that rely solely on the previous species words or prefixes is very good but the recall is low. The system that

looks at the previous species word in the same sentence does better as measured by F1. In addition, spreading the

species improves both systems but the overall results are still not satisfactory.

It is slightly counter-intuitive that using a rule such as ‘PreWd’ did not achieve perfect precision. Closer inspection

revealed that most of the false positives were due to a few problematic guidelines in the annotation process. For

example,

• “The amounts of human and mouse CD200R ...”, where ‘CD200R’ was tagged as mouse (10090) by the system
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but the gold-standard answer was human (9606). This was due to the fact that the annotation tool was not able

to assign multiple correct species to a single entity.

• “... wheat eIFiso4G ...”, where ‘eIFiso4G’ was tagged as wheat (4565) but the annotator thought it was

Triticum (4564). In this case, TaxID 4565 is a species under genus 4564, and arguably is also a correct answer.

Other similar cases include Xenopus vs. Xenopus tropicalis, and Rattus vs. Rattus norvegicus, etc. This is the

main cause for the false positives as our system always predicts species instead of genus or TaxIDs of any other

ranks, which the annotators occasionally employed.

Furthermore, we split the EPPI and TE datasets into training and development test (devtest) sets and developed a

machine-learning (ML) based species tagger. Using the training splits, we trained a maximum entropy classifier [17]

on a number of features such as contextual words and nearly species words, which will be detailed later.

The results of the ML species tagger are shown in Table 3. We measure the performance in accuracy instead of F1

because the ML based tagger assigns a species tag to every entity occurrence, and therefore precision is equal to

recall. We tested four models on the devtest portions of the EPPI and TE corpora:

• BL: a baseline system, which tags the devtest instances using the most frequent species occurring in the

corresponding training dataset. For example, human is the most frequent species in the EPPI training data, and

therefore all entities in the EPPI devtest dataset were tagged with human.

• EPPI Model: obtained by training the maxent classifier on the EPPI training data.

• TE Model: obtained by training the maxent classifier on the TE training data.

• Combined Model: obtained by training the maxent classifier on a joint dataset consisting of both the EPPI and

TE training corpora.

Finally, we devised a hybrid species tagging system. As we have shown, the rules ‘PreWd’ and ‘Prefix’ achieved very

good precision but low recall, which suggests that when these rules were applicable, it is highly likely that they

would get the correct species. Based on this observation, we combined the ML approach and the rule-based approach

in such a way that the rules ‘PreWd’ and ‘Prefix’ were applied on top of ML and to override predictions made by ML.

The hybrid systems were tested on the same datasets and the results are shown in the right 3 columns in Table 3.

We performed significance tests on the results in Table 3. First, a Friedman test was used to determine whether the 7

sets of results were significantly different, and then pairwise Wilcoxon Signed Rank tests were employed to tell

whether any system performed significantly better than others. On both datasets, the 6 machine-learning models
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significantly outperformed the baseline (p < 0.01). On EPPI devtest dataset, the EPPI models (with or without rules)

and the Combined Models outperformed the TE models (p < 0.05), while on TE dataset, the TE models and the

Combined Models outperformed the EPPI models (p < 0.05). Applying the post filtering rules did not significantly

improve the ML models, although it appears that adding the rules consistently increased the accuracy.

Term identification with species disambiguation
Experiments on the ITI TXM corpora

To identify whether species disambiguation can improve performance of TI, we ran the TI system on the EPPI and TE

datasets in the ITI TXM corpora. We tested the TI systems with or without help from a number of species tagging

systems, including:

• Baseline: Run TI without species tags. Note that the TI system already integrated a basic species tagging

system that uses the Majority Vote rule. Thus this is a fairly high ‘baseline’.

• Gold Species: Run TI with manually tagged species. This is the upper-bound performance.

• Rule: Run TI with species predicted by the rule-based species tagger using rules “PreWd” and “Prefix”.

• ML(human/mouse): Run TI with the species that occurs most frequently in the training datasets (i.e., human for

EPPI and mouse for TE).

• ML(EPPI): Run TI with species predicted by the ML tagger trained on the EPPI training dataset.

• ML(EPPI)+Rule: Run TI with species predicted by the hybrid system using both ML(EPPI) and the rules.

• ML(TE): Run TI with species predicted by the ML tagger trained on the TE training dataset.

• ML(TE)+Rule: Run TI with species predicted by the hybrid system using both ML(TE) and the rules.

• ML(EPPI+TE): Run TI with species predicted by the ML tagger trained on both EPPI and TE training data.

• ML(EPPI+TE)+Rule: Run TI with species predicted by the hybrid system using both ML(EPPI+TE) and the

rules.

We score the systems using top n precision, where n ∈ {1, 5, 10, 15, 20}. The argument for this evaluation scheme is

that if a TI system is not good enough in predicting a single identifier correctly, a ‘bag’ of IDs with the correct answer

included would also be helpful. The ‘Avg. Rank’ field denotes the averaged position where the correct answer lies in,

and the lower the value is, the better the TI system performs. For example, a TI system with an ‘Avg. Rank’ of 1
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would be ideal, as it would always return the correct ID at the top of the list. Note that in the TE data, not only protein

entities, but also genes, mRNAcDNA, and GOMOPs were tagged, where a GOMOP denotes an entity being either a

gene, or an mRNAcDNA, or a protein.

As shown in Tables 4 and 5, on both datasets, using the gold standard species much improved accuracy of TI (e.g.,

19.2% on EPPI data). Also, automatically predicted species tags were proven to be helpful. On the EPPI data, the

ML(EPPI)+Rule outperformed other systems. Note that the species distribution in the devtest dataset is strongly

biased to human, which explains why the ML(human) system performed nearly as well. However, defaulting to

human was not guaranteed to succeed because one would not be able to know the prior species in a collection of

unseen documents. Indeed, on the TE data, the system ML(mouse), which uses mouse as default, yielded poor results.

Experiments on BioCreAtIvE data

To assess the portability of the species tagging approaches, an “artificial” dataset was created by joining the

species-specific datasets from BioCreAtIvE 1 & 2 GN tasks to form a corpus consisting of four species. In detail, four

datasets were taken, three from BioCreAtIvE 1 task 1B (i.e., fly, mouse and yeast) and one from BioCreAtIvE 2 task

GN (i.e., human). Assuming genes in each dataset are species-specific, we can train/test ML models for species

disambiguation and apply them to help TI. This task is more difficult than the original BioCreAtIvE GN tasks due to

the additional ambiguity caused by multiple model organisms. Note that the above assumption is not strictly true

because each dataset may contain genes of other species, and it would be hard to assess how true it is as abstracts in

the BioCreAtIvE GN datasets are not normalised to an entity level.

We first carried out experiments on species disambiguation. In addition to the TXM (i.e., the system uses

ML(EPPI+TE)+Rule model) and the Majority Vote taggers, we trained the species tagger on a dataset comprising of

the devtest sets from the BioCreAtIvE I & II GN tasks. In more detail, we first pre-processed the dataset and marked

up gene entities with an NER system [11, 18], which was trained on BioCreAtIvE II GM training and test datasets.

The entities were tagged with the species as indicated by the source dataset where they were drawn from, which were

used as the ‘gold’ species. Using the same algorithm and feature set as described previously, a BC model was trained.

As shown in Table 6, except on human, the TXM model yielded very disappointing results, whereas the BC model did

well overall. This was because the TXM model was trained on a dataset where fly and yeast entities occur rarely with

only 2% and 5% of the training instances belonging to these species, respectively, which again revealed the influence

of the bias introduced in the training material to the ML models.

Using the species disambiguation models, we carried out TI experiments, using the same procedure as we did on the

7



TXM data. The results were obtained using the official BioCreAtIvE GN scorers and are presented in Table 7.

Performance of TI assisted by all three species taggers were much behind that of TI using the gold-standard species,

which shows species-tagging can potentially enhance TI performance and there is much room for improving the

species disambiguation systems. On the other hand, it was disappointing that the ‘Majority Vote’ system, which did

not use any external species tagger, achieved the best results, while TI with the ‘BC model’ tagger yielded slightly

worse results and the TXM model performed poorly.

One possible reason that the ‘Majority Vote’ tagger yielded reasonably good result on the BioCreAtIvE dataset, but

unsatisfactory result on the TXM datasets was due to the difference in document length in the two corpora: the

BioCreAtIvE corpus is comprised of abstracts and the TXM corpora consist of only full-length articles. In abstracts,

authors are inclined to only talk about the main biomedical entities described in the paper, whereas in full articles,

they tend to describe a larger number of entities, possibly in multiple species, for the purposes of describing related

work or comparison. Recall that the ‘Majority Vote’ rule outputs the species indicated by the majority of the species

words, which would obviously perform better on abstracts, where more likely only one species is described, than on

full-length articles. Table 8 shows the number of species per document in the TXM data, where most documents (i.e.,

74%) involve more than one species, in which cases the ‘Majority Vote’ would not be able to take obvious advantage.

Conclusions

We have presented a range of solutions to the task of species disambiguation and evaluated their performance on the

ITI TXM corpus, and on a joint dataset from BioCreAtIvE I & II GN tasks. We showed that rule-based species tagging

systems that exploit heuristics, such as previous species words or species prefix, can achieve very high precision but

low recall. ML species taggers, on the other hand, can achieve good overall performance, under the condition that the

species distributions in training and test datasets are not too distant. Our best performing species tagger is a hybrid

system that first uses ML to predict species and then applies certain rules to correct errors.

We also performed TI experiments with help from the species tags assigned by human annotators, or predicted by the

automatic species taggers. On all datasets, the gold-standard species tags much improved TI performance: 19.21% on

the EPPI devtest set, 8.59% on the TE devtest set, and 23.4% on the BioCreAtIvE GN test datasets, which clearly

shows that species information is indeed very important for TI. On the EPPI and TE datasets, the species predicted by

the best-performing hybrid system improved TI by 11.57% and 3.61%, respectively. On the combined dataset from

BioCreAtIvE GN tasks, however, it did not work as well as expected.
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Methods
Detecting species words

Words referring to species, such as human, are important indicators of the species of the nearby entities. We

developed a rule-based program that detects species words, which were used to help the species identification

systems.

The species word tagger is a lexical look-up component which applies to tokenised text and marks content words

such as human, murine and D. melanogaster with their corresponding species TaxIDs. In addition, rules written in an

lxtransduce grammar [19] developed at the LTG group at Edinburgh University are used to identify species prefixes

(e.g., ’h’ for human, ’m’ for mouse). For example, the term mSos-1 would be assigned with a TaxID for mouse. Note

that a species “word” may contain several words, for example, “E. coli”. Please see [20] for more details on the

species word tagger.

Machine learning based species tagging

We trained a maximum entropy classifier [17] on the following set of features, with respect to each entity occurrence.

The parameter n was empirically developed using the training datasets.

• leftContext The n word lemmas to the left of the entity, without position (n = 200).

• rightContext The n word lemmas to the right of the entity, without position (n = 200).

• leftSpeciesIDs The n species IDs, located to the left of the entity and assigned by the species word tagger

(n = 5).

• rightSpeciesIDs The n species IDs, located to the right of the entity and assigned by the species word tagger

(n = 5).

• leftNouns The n nouns to the left of the entity (with order and n = 2). This feature attempts to capture cases

where a noun preceding an entity indicates species, e.g., mouse protein p53.

• leftAdjs The n adjectives to the left of the entity (with order and n = 2). This feature intends to capture cases

where an adjective preceding an entity indicates species, e.g., murine protein p53.

• leftSpeciesWords The n species word forms, identified by the species word tagger, located to the left of the

entity (n = 5).

• rightSpeciesWords The n species word forms, identified by the species word tagger, located to the right of the

entity (n = 5).
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• firstLetter The first character of the entity itself. Sometimes the first letters of entities indicate their species,

e.g., hP53.

• documentSpeciesIDs All species IDs that occur in the article in question.

• useStopWords If this feature is switched on then filter out the words that appear in a pre-compiled stop-word

list from the above features. The list consists of frequent common English words such as prepositions (e.g., in).

• useStopPattern If this feature is switched on then filter out the words consisting only of digits and punctuation

characters.

The TI system

The TI system is composed of a matcher which determines a list of candidate identifiers and a ranker that assigns a

confidence value to each identifier that is used to rank the candidates in order with the most likely identifiers

occurring first. The matcher is based largely on the rule-based system described in [3], but has been put into a more

flexible framework that allows for defining and customising the rules in a configuration file. In addition, the system

has been expanded to perform TI on additional entity types. The rules for each entity were developed using the

training data and a visualisation system that compared the synonym list for the target identifiers with the actual entity

mentions and provided visual feedback on the true positives and false positives resulting from candidate rules sets.

Examples of some of the rules that can be incorporated into the system are listed below. A confidence value is

assigned to each of the rules using heuristics and passed to the ranking system.

1. LowerCase: Convert the entity mention to lowercase and look up the result in a lower case version of the entity

term database.

2. Norm: Normalise the mention and look up the result in a normalised version of the term database, where

normalising a string involves converting Greek characters to English (e.g., α→alpha), converting to lowercase,

changing sequential indicators to integer numerals (e.g., i, a, alpha→1, etc.) and removing all spaces and

punctuation. For example, rab1, rab-1, rabα, rab I are all normalised to rab1.

3. Prefix: Add and/or remove a set of prefixes from the entity mention and look up the result in the entity term

database. The actual prefixes and whether to add or remove them are specified in the configuration file.

4. Suffix: Add and/or remove a set of suffixes from the entity mention and look up the result in the entity term

database. The actual suffixes and whether to add or remove them are specified in the configuration file.
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5. Porter: Compute the Porter stem of the entity mention and looked up the synonym in a Porter stemmed version

of the entity term database.

The ranking system currently works by defining a set of confidence indicators for each entity, computing the

confidence for each indicator and then multiplying each individual confidence together to determine the overall

identifier confidence. The following indicators are currently used by the system.

1. Match: The confidence as determined by the matcher.

2. Species: The confidence that the species of the identifier is the correct species.

3. Reference Count: Based on the number of literature references databases associated with each identifier,

obtained from EntrezGene and RefSeq. The higher the reference count, the higher the confidence.

4. Primary Name: Based on a determination that the entity mention is the primary name for the identifier. This is

based both on a name provided by the lexicon and a name derived from the synonym list.

Among these, one of the most critical indicators is the species confidence. By default, this confidence is set to the

weight assigned to the species by the Majority Vote tagger. When the species of an entity is tagged by an external

species tagger or by human annotators, the default confidence can be overridden. This setting allows us to integrate

automatic species taggers, such as the ones described in the previous section, for achieving better TI performance.

For example, suppose we want to employ the Hybrid species tagger. To compute the species confidence, first the

hybrid tagger is used to predict the most likely species and the Majority Vote tagger is run at the same time. If the

species of an identifier matches the species assigned by the hybrid tagger, the species confidence is set to the weight

generated by the hybrid tagger. Otherwise, the confidence is set to the weight generated by the Majority Vote tagger.
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Tables
Table 1 - Ambiguity in protein names

Ambiguity in protein entities, with and without species information, in EPPI and TE datasets.
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Protein Cnt ID Cnt Ambiguity
EPPI 6,955 184,633 26.55

EPPI species 6,955 17,357 2.50
TE 8,539 103,016 12.06

TE species 8539 12,705 1.49

Table 2 - Results (%) of the rule-based species tagger

EPPI devtest TE devtest
P R F1 P R F1

PreWd 81.88 1.87 3.65 91.49 1.63 3.21
PreWd + Spread 63.85 14.17 23.19 77.84 17.97 29.20
PreWd Sent 60.79 5.16 9.52 56.16 7.76 13.64
PreWd Sent + Spread 39.74 50.54 44.49 31.71 46.68 37.76
Prefix 98.98 3.07 5.96 77.93 2.97 5.72
PreWd + Prefix 91.95 4.95 9.40 82.27 4.62 8.75
PreWd + Prefix + Spread 68.46 17.49 27.87 77.77 21.26 33.39
Majority Vote 44.10 44.10 44.10 49.87 49.87 49.87

Table 3 - Results (%) of the machine-learning and hybrid species taggers

Accuracy (%) of the machine-learning based species tagger and the hybrid species tagger as tested on the EPPI and

TE devtest datasets. An ‘Overall’ score is the micro-average of a system’s accuracy on both datasets.

BL EPPI TE Combined EPPI Model TE Model Combined Model
Model Model Model +Rules +Rules +Rules

EPPI devtest 60.56 73.03 58.67 72.28 74.24 59.67 73.77
TE devtest 30.22 67.15 69.82 67.20 67.53 70.14 67.47
Overall 48.88 70.77 62.96 70.33 71.66 63.70 71.34

Table 4 - Results (%) of TI on the EPPI dataset

All figures, except ‘Avg. Rank’, are percentages. This evaluation was carried out on protein entities only.
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Method Prec@1 Prec@5 Prec@10 Prec@15 Prec@20 Avg. Rank
Baseline 54.31 73.45 76.44 77.90 78.51 5.82
Gold Species 73.52 79.36 80.75 80.75 80.99 1.62
Rule 54.99 73.72 76.45 77.91 78.52 5.79
ML(human) 65.66 76.36 78.82 79.78 80.03 2.58
ML(EPPI) 65.24 76.82 79.01 79.93 80.29 2.39
ML(EPPI)+Rule 65.88 77.09 79.04 79.94 80.30 2.36
ML(TE) 55.87 75.14 78.69 79.85 80.30 2.86
ML(TE)+Rule 56.54 75.47 78.70 79.86 80.31 2.83
ML(EPPI+TE) 64.55 76.48 78.53 79.83 80.38 2.49
ML(EPPI+TE)+Rule 65.03 76.62 78.55 79.84 80.39 2.46

Table 5 - Results (%) of TI on the TE dataset

All figures, except ‘Avg. Rank’, are percentages. There are four entity types in the TE data, i.e., protein, gene,

mRNAcDNA and GOMOP. The evaluation was carried out on all entity types.

Method Prec@1 Prec@5 Prec@10 Prec@15 Prec@20 Avg. Rank
Baseline 63.24 76.20 77.30 77.94 78.25 1.72
Gold Species 71.82 78.03 78.34 78.40 78.41 1.29
Rule 63.45 76.21 77.30 77.95 78.25 1.72
ML(mouse) 58.76 75.40 77.25 77.92 78.24 1.90
ML(EPPI) 66.59 76.53 77.23 77.76 78.12 1.68
ML(EPPI)+Rule 66.85 76.54 77.24 77.76 78.12 1.67
ML(TE) 66.12 76.25 77.32 77.81 78.11 1.70
ML(TE)+Rule 66.37 76.25 77.32 77.81 78.11 1.70
ML(EPPI+TE) 65.78 76.14 77.28 77.84 78.12 1.71
ML(EPPI+TE)+Rule 66.03 76.14 77.29 77.84 78.12 1.70

Table 6 - Results (%) of species tagging on the BioCrAtIvE joint dataset

Accuracy (%) of the species disambiguation systems as tested on the BioCreAtIvE I & II test data. The ‘BC model’

was trained on the BioCreAtIvE devtest data, the ‘TXM model’ was trained on the TXM EPPI and TE training data,

and the ‘Majority Vote’ was the default species tagging system in the TI system.

human fly mouse yeast
Majority Vote 82.35 78.43 71.69 85.12

BC model 70.23 89.24 75.41 87.64
TXM model 93.35 3.27 31.89 3.49

Table 7 - Results (%) of TI on the BioCrAtIvE joint dataset

Performance of TI with or without the automatically predicted species on the joint BioCreAtIvE GN test dataset.
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System Precision Recall F1
Gold 70.1 63.3 66.5
Majority Vote 46.7 56.3 51.0
TXM model 37.8 46.5 41.7
BC model 45.8 56.1 50.4

Table 8 - # of species per document in the TXM data

# Species # of Docs % of Docs
1 96 26.20
2 121 32.79

3+ 153 41.19
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