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Abstract
Background: Previous studies of named entity recognition have shown that a reasonable level of
recognition accuracy can be achieved by using machine learning models such as conditional random
fields or support vector machines. However, the lack of training data (i.e. annotated corpora)
makes it difficult for machine learning-based named entity recognizers to be used in building
practical information extraction systems.

Results: This paper presents an active learning-like framework for reducing the human effort
required to create named entity annotations in a corpus. In this framework, the annotation work
is performed as an iterative and interactive process between the human annotator and a
probabilistic named entity tagger. Unlike active learning, our framework aims to annotate all
occurrences of the target named entities in the given corpus, so that the resulting annotations are
free from the sampling bias which is inevitable in active learning approaches.

Conclusion: We evaluate our framework by simulating the annotation process using two named
entity corpora and show that our approach can reduce the number of sentences which need to be
examined by the human annotator. The cost reduction achieved by the framework could be drastic
when the target named entities are sparse.

Background
Named entities play a central role in conveying important
domain specific information in text, and good named
entity recognizers are often required in building practical
information extraction systems. Previous studies have
shown that automatic named entity recognition can be

performed with a reasonable level of accuracy by using
various machine learning models such as support vector
machines (SVMs) or conditional random fields (CRFs) [1-
3].
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However, the lack of annotated corpora, which are indis-
pensable for training machine learning models, makes it
difficult to broaden the scope of text mining applications.
In the biomedical domain, for example, several annotated
corpora such as GENIA [4], PennBioIE [5], and GENETAG
[6] have been created and made publicly available, but the
named entity categories annotated in these corpora are
tailored to their specific needs and not always sufficient or
suitable for text mining tasks that other researchers need
to carry out.

Active learning is a framework which can be used for reduc-
ing the amount of human effort required to create a train-
ing corpus [7-10]. In active learning, samples that need to
be annotated by the human annotator are picked up from
a big pool of samples by a machine learning model in an
iterative and interactive manner, considering the inform-
ativeness of the samples. It has been shown that, com-
pared to random sampling, active learning can often
drastically reduce the amount of training data necessary to
achieve the same level of performance. The effectiveness
of active learning has been demonstrated in several natu-
ral language processing tasks including named entity rec-
ognition.

The problem with active learning, however, is that the
resulting annotated data is dependent on the machine
learning algorithm and the sampling strategy employed,
because active learning annotates only a subset of the sam-
ples in the given corpus. This sampling bias is not a seri-
ous problem if one is to use the annotated corpus only for
their own machine learning purpose and with the same
machine learning algorithm. However, the existence of
bias is not desirable if one wants the corpus to be used by
other applications or researchers. For the same reason,
active learning approaches cannot be used to enrich an
existing linguistic corpus with a new named entity cate-
gory.

In this paper, we present a framework that enables one to
make named entity annotations for a given corpus with a
reduced cost. Unlike active learning approaches, our
framework aims to annotate all named entities of the tar-
get category contained in the corpus. Obviously, if we
were to ensure 100% coverage of annotation, there is no
way of reducing the annotation cost, i.e. the human anno-
tator has to go through every sentence in the corpus. How-
ever, we show in this paper that it is possible to reduce the
cost by slightly relaxing the requirement for the coverage,
and the reduction can be drastic when the target named
entities are sparse.

We should note here that the purpose of this paper is not
to claim that our approach is superior to existing active
learning approaches. The goals are different – while active
learning aims at optimizing the performance of the result-
ing machine learning-based tagger, our framework aims
to help develop an unbiased named entity-annotated cor-
pus.

Methods
Annotating named entities by dynamic sentence selection
Figure 1 shows the overall flow of our annotation frame-
work. The framework is an iterative process between the
human annotator and a named entity tagger based on
CRFs. In each iteration, the CRF tagger is trained using all
annotated sentences available and is applied to the unan-
notated sentences to select sentences that are likely to con-
tain named entities of the target category. The selected
sentences are then annotated by the human annotator
and moved to the pool of annotated sentences.

This overall flow of annotation framework is very similar
to that of active learning. In fact, the only differences are
the criterion of sentence selection and the fact that our
framework uses the estimated coverage as the stopping
condition. In active learning, sentences are selected
according to their informativeness to the machine learn-

Annotating named entities by dynamic sentence selectionFigure 1
Annotating named entities by dynamic sentence selection.

1. Select the first n sentences from the corpus and annotate the named entities of the target category.

2. Train a CRF tagger using all annotated sentences.

3. Apply the CRF tagger to the unannotated sentences in the corpus and select the top n sentences that
are most likely to contain target named entities.

4. Annotate the selected sentences.

5. Go back to 2 (repeat until the estimated coverage reaches a satisfactory level).
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ing algorithm. Our approach, in contrast, selects sentences
that are most likely to contain named entities of the target
category. The next section elaborates on how to select such
sentences using the output of the CRF-based tagger.

The other key in this annotation framework is when to
stop the annotation work. If we repeat the process until all
sentences are annotated, then obviously there is no merit
of using this approach. We show in the next section that
we can quite accurately estimate how many of the entities
in the corpus are already annotated and use this estimated
coverage as the stopping condition.

Selecting sentences using the CRF tagger
Our annotation framework takes advantage of the ability
of CRFs to output multiple probabilistic hypotheses. This
section describes how we obtain named entity candidates
and their probabilities from CRFs in order to compute the
expected number of named entities contained in a sen-
tence.

We should note that one could use other machine learn-
ing algorithms for this task as long as they can produce
probabilistic output. For example, maximum entropy
Markov models are a possible alternative. We have chosen
the CRF model because it is currently one of the best mod-
els for named entity recognition and there are efficient
algorithms to compute marginal probabilities and N-best
sequences in CRFs.

The CRF tagger
CRFs [11] can be used for named entity recognition by
representing the spans of named entities using the "BIO"
tagging scheme, in which 'B' represents the beginning of a
named entity, 'I' the inside, and 'O' the outside (See Table
1 for example). This representation converts the task of
named entity recognition into a sequence tagging task.

A linear chain CRF defines a single log-linear probabilistic
distribution over the possible tag sequences y for a sen-
tence x:

where fk(t, yt, yt-1, xt) is typically a binary function indicat-
ing the presence of feature k, λk is the weight of the feature,
and Z(X) is a normalization function:

This modeling allows us to define features on states
("BIO" tags) and edges (pairs of adjacent "BIO" tags)
combined with observations (e.g. words and part-of-
speech (POS) tags).

The weights of the features are determined in such a way
that they maximize the conditional log-likelihood of the

training data: . In the actual

implementation, we also used the L2-norm penalty term
to avoid overfitting of the model to the training data. We
used the L-BFGS algorithm [12] to compute the parame-
ters.

Table 2 shows the feature templates used in the CRF tag-
ger. We used unigrams of words/POS tags, and prefixes
and suffixes of the current word. The current word is also
normalized by lowering capital letters and converting all
numerals into '#', and used as a feature. We created a word
shape feature from the current word by converting consec-
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Table 2: Feature templates used in the CRF tagger

Word Unigram wi, wi-1, wi+1 &yi
POS Unigram pi, pi-1, pi+1 &yi
Prefix, Suffix prefixes of wi &yi

suffixes of wi &yi
(up to length 3)

Normalized Word N(wi) &yi
Word Shape S(wi) &yi
Tag Bi-gram true &yi-1yi

Table 1: N-best sequences output by the CRF tagger

Probability Transcription factor GATA-1 and the estrogen receptor

0.677 B I O O O O O
0.242 B I O O O B I
0.035 O O O O O O O
0.012 B I I O O O O
0.009 B I I O O B I

: : : : : : : :
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utive capital letters into 'A', small letters 'a', and numerals
'#'.

Computing the expected number of named entities
To select sentences that are most likely to contain named
entities of the target category, we need to obtain the
expected number of named entities contained in each sen-
tence. CRFs are well-suited for this task as the output is
fully probabilistic – one can easily obtain probabilistic
information on possible tag sequences using established
algorithms (i.e. A* and forwrad-backward algorithms).

Suppose, for example, that the sentence is "Transcription
factor GATA-1 and the estrogen receptor". Table 1 shows
an example of the 5-best sequences output by the CRF tag-
ger. The sequences are represented by the aforementioned
"BIO" representation. For example, the first sequence
indicates that there is one named entity 'Transcription fac-
tor' in the sequence. By summing up these probabilistic
sequences, we can compute the probabilities for possible
named entities in a sentence. From the five sequences in
Table 1, we obtain the following three named entities and
their corresponding probabilities.

'Transcription factor' (0.677 + 0.242 = 0.916)

'estrogen receptor' (0.242 + 0.009 = 0.251)

'Transcription factor GATA-1' (0.012 + 0.009 = 0.021)

The expected number of named entities in this sentence
can then be calculated as 0.916 + 0.251 + 0.021 = 1.188.

In this example, we used 5-best sequences as an approxi-
mation to all possible sequences needed to compute the
exact expected number of entities. One possible way to
achieve a good approximation is to use a large N for N-
best sequences, but there is a simpler and more efficient
way, which directly produces the exact expected number
of entities. Recall that named entities are represented with
the "BIO" tags. Since one entity always contains one "B"
tag, we can compute the number of expected entities by
simply summing up the marginal probabilities for the "B"
tags on all tokens in the sentence. The marginal probabil-
ities on each token can be computed by the forward-back-
ward algorithm. This is normally more efficient than
computing N-best sequences for a large N. For efficient
implementation of the forward-backward algorithm, see
[13].

Once we compute the expected number of entities for
every unannotated sentence in the corpus, we sort the sen-
tences in descending order of the expected number of
entities and choose the top n sentences to be presented to
the human annotator.

Coverage estimation
To ensure the quality of the resulting annotated corpus, it
is crucial to be able to know the current coverage of anno-
tation at each iteration in the annotation process. To com-
pute the coverage, however, one needs to know the total
number of target named entities in the corpus. The prob-
lem is that it is not known until all sentences are anno-
tated.

In this paper, we solve this dilemma by using an estimated
value for the total number of entities. Then, the estimated
coverage can be computed as follows:

where m is the number of entities actually annotated so far
and Ei is the expected number of entities in sentence i, and
U is the set of unannotated sentences in the corpus. At any
iteration, m is always known and Ei is obtained from the
output of the CRF tagger as explained in the previous sec-
tion.

Results and discussion
We carried out experiments to see how our method can
improve the efficiency of annotation process for sparse
named entities. We evaluate our method by simulating
the annotation process using existing named entity cor-
pora. In other words, we use the gold-standard annota-
tions in the corpus as the annotations that would be made
by the human annotator during the annotation process.

Corpus
We used two named entity corpora for the experiments.
One is the training data provided for the CoNLL-2003
shared task [1], which consists of 14,041 sentences and
includes four named entity categories (LOC, MISC, ORG,
and PER) for the general domain. The other is the training
data provided for the NLPBA shared task [14], which con-
sists of 18,546 sentences and five named entity categories
(DNA, RNA, cell_line, cell_type, and protein) for the bio-
medical domain. This corpus is created from the GENIA
corpus [4] by merging the original fine-grained named
entity categories.

Table 3 shows statistics of the named entities included in
the corpora. The first column shows the number of named
entities for each category. The second column shows the
number of the sentences that contain the named entities
of each category. We can see that some of the named
entity categories are very sparse. For example, named enti-
ties of "RNA" appear only in 4.4% of the sentences in the
corpus. In contrast, named entities of "protein" appear in
more than 70% of the sentences in the corpus.

estimated coverage
m

m Eii U
_( ) =

+ ∈∑
(1)
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In the experiments reported in the following sections, we
do not use the "protein" category because there is little
merit of using our framework when most sentences are
relevant to the target category.

Accelerated annotation
We carried out eight sets of experiments, each of which
corresponds to one of those named entity categories
shown in Table 3 (excluding the "protein" category). The
number of sentences selected in each iteration (the value
of n in Figure 1) was set to 100 throughout all experi-
ments.

Figures 2 to 5 show the results obtained on the CoNLL
corpus. The figures show how the coverage increases as the
annotation process proceeds. The x-axis shows the
number of annotated sentences.

Each figure contains three lines. The normal line repre-
sents the coverage actually achieved, which is computed
as follows:

The dashed line represents the coverage estimated by
using Equation 1. For the purpose of comparison, the dot-
ted line shows the coverage achieved by the baseline
annotation strategy in which sentences are selected
sequentially from the beginning to the end in the corpus.

The figures clearly show that our method can drastically
accelerate the annotation process in comparison to the
baseline annotation strategy. The improvement is most
evident in Figure 3, in which named entities of the cate-
gory "MISC" are annotated.

We should also note that coverage estimation was surpris-
ingly accurate. In all experiments, the difference between
the estimated coverage and the real coverage was very

small. This means that we can safely use the estimated
coverage as the stopping condition for the annotation
work.

Figures 6 to 9 show the experimental results on the GENIA
data. The figures show the same characteristics observed
in the CoNLL data. The acceleration by our framework
was most evident for the "RNA" category. Table 4 shows
how much we can save the annotation cost if we stop the
annotation process when the estimated coverage reaches
99%. The first column shows the coverage actually
achieved, and the second and third columns show the
number and percentage of the sentences annotated in the
corpus. This result shows that, on average, we can achieve
a coverage of 99.0% by annotating 52.4% of the sentences
in the corpus. In other words, we could roughly halve the
annotation cost by accepting the missing rate of 1.0%.

coverage
entities annotated

total number of entities
( ) = _

_ _ _
. (2)

Annotation of MISC in the CoNLL corpusFigure 3
Annotation of MISC in the CoNLL corpus.

Table 3: Statistics of named entities

# Entities Sentences (%)

CoNLL: LOC 7,140 5,127 (36.5%)
CoNLL: MISC 3,438 2,698 (19.2%)
CoNLL: ORG 6,321 4,587 (32.7%)
CoNLL: PER 6,600 4,373 (31.1%)

GENIA: DNA 2,017 5,251 (28.3%)
GENIA: RNA 225 810 (4.4%)
GENIA: cell_line 835 2,880 (15.5%)
GENIA: cell_type 1,104 5,212 (28.1%)
GENIA: protein 5,272 13,040 (70.3%)

Annotation of LOC in the CoNLL corpusFigure 2
Annotation of LOC in the CoNLL corpus.
Page 5 of 10
(page number not for citation purposes)



BMC Bioinformatics 2008, 9(Suppl 11):S8 http://www.biomedcentral.com/1471-2105/9/S11/S8
As expected, the cost reduction was most drastic when
"RNA", which is the most sparse named entity category
(see Table 3), was targeted. The cost reduction was more
than seven-fold. These experimental results confirm that
our annotation framework is particularly useful when
applied to sparse named entities.

One of the potential problems with this kind of active
learning-like framework is the computation time required
to retrain the tagger at each iteration. Since the human
annotator has to wait while the tagger is being retrained,
the computation time required for retraining the tagger
should not be very long. Table 5 shows the time elapsed
in the experiments. We used AMD Opteron 2.2 GHz serv-
ers for the experiments and our CRF tagger is imple-
mented in C++. In our experiments, the worst case (i.e.
DNA) required 443 seconds for retraining the tagger at the

last iteration, but in most cases the training time for each
iteration was kept under several minutes. We used the
BFGS algorithm for training the CRF model in this work,
but it is probably possible to further reduce the training
time by using more recent parameter estimation algo-
rithms such as exponentiated gradient algorithms [15].

Suggesting annotation candidates
In the previous section, we discussed how much we can
reduce the number of sentences that need to be examined
by the annotator, but we did not discuss the annotation
cost for individual sentences presented to the annotator.
Here we present some experimental results to show that
the annotation cost for each sentence could be reduced if
we take advantage of the N-best sequences output from
the CRF tagger by using the idea presented in [16].

Annotation of RNA in the GENIA corpusFigure 7
Annotation of RNA in the GENIA corpus.

Annotation of PER in the CoNLL corpusFigure 5
Annotation of PER in the CoNLL corpus.

Annotation of ORG in the CoNLL corpusFigure 4
Annotation of ORG in the CoNLL corpus.

Annotation of DNA in the GENIA corpusFigure 6
Annotation of DNA in the GENIA corpus.
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The idea is to present the N-best sequences from the CRF
tagger to the annotator as the annotation candidates, so
that the annotator does not have to make the annotation
for the sentence from scratch. In other words, all (s)he has
to do is selecting the correct annotation for the sentence
from the list of likely annotations suggested by the system.

The effectiveness of this approach is almost exclusively
dependent on the quality of the annotation candidates
generated by the CRF tagger. To investigate their quality,
we carried out additional experiments using the GENIA
corpus and the RNA category.

Table 6 shows the result. The first three columns show the
number of iteration, the actual coverage achieved, and the
estimated coverage respectively. These three columns sim-
ply show the same data presented in Figure 7. The fourth
column shows the percentage of the sentences that con-
tained at least one target named entity, among the 100
sentences presented in each iteration.

In this experiment, we assumed that the CRF tagger gener-
ates 10 annotation candidates for each sentence. The fifth
column in Table 6 shows the percentage of the cases
where the correct annotation for the sentence was actually
included in the candidates. The sixth column shows the
average rank of the correct annotation in the candidates.
The experimental results were promising – the correct
annotation was included in the top 10 candidates in most
cases and they are usually highly ranked in the list.

Enriching an existing corpus
In the experiments presented in the previous sections, we
assumed that the annotation work for each named entity
category is carried out independently from other catego-
ries. However, there are cases where we can take advantage
of the information about named entities of other catego-
ries.

Let us suppose a situation where we want to enrich an
existing named entity corpus with a new named entity cat-

Annotation of cell_type in the GENIA corpusFigure 9
Annotation of cell_type in the GENIA corpus.

Table 4: Coverage achieved when the estimated coverage reached 99%

Coverage # Sentences Annotated Percentage in the Corpus

CoNLL: LOC 99.1% 7,600 54.1%
CoNLL: MISC 96.9% 5,400 38.5%
CoNLL: ORG 99.7% 8,900 63.4%
CoNLL: PER 98.0% 6,200 44.2%

GENIA: DNA 99.8% 11,900 64.2%
GENIA: RNA 99.2% 2,500 13.5%
GENIA: cell_line 99.6% 9,400 50.7%
GENIA: cell_type 99.3% 8,600 46.4%

Average 99.0% - 52.4%

Annotation of cell_line in the GENIA corpusFigure 8
Annotation of cell_line in the GENIA corpus.
Page 7 of 10
(page number not for citation purposes)



BMC Bioinformatics 2008, 9(Suppl 11):S8 http://www.biomedcentral.com/1471-2105/9/S11/S8
egory. If named entities are not allowed to overlap, we can
rule out the text regions that are already covered by the
existing named entity categories when computing the
expected numbers of target named entities, which should
improve the accuracy of estimated coverage and lead to
improved efficiency of annotation work.

We carried out another set of experiments to simulate this
kind of situation. We used the same eight categories that
were used in the previous experiments, but we assumed
the existence of the named entities of the other categories.
For example, when we ran the experiments for the LOC
category in the CoNLL corpus, we assumed that the corpus
was already annotated with the other three categories (i.e.

MISC, ORG, and PER) and named entities were not
allowed to overlap.

The results are shown in Table 7. As expected, the num-
bers of sentences that needed to be examined were much
smaller than those in the previous experiments shown in
Table 4.

Discussion and related work
Our annotation framework is, by definition, not some-
thing that can ensure a coverage of 100%. The seriousness
of a missing rate of, for example, 1% is not entirely clear –
it depends on the application and the purpose of annota-
tion. In general, however, it is hard to achieve a coverage

Table 6: Detailed results of the annotation process for GENIA:RNA

Iteration Coverage Estimated Coverage Relevant Sentences Coverage of Suggested Annotation Average Rank of Suggested Annotation

1 0.4% 17.4% 85% 86% 2.64
2 11.8% 15.9% 90% 82% 2.12
3 27.9% 21.1% 58% 83% 2.54
4 35.6% 37.3% 87% 94% 1.48
5 45.4% 49.4% 89% 96% 1.50
6 55.6% 56.3% 79% 96% 1.65
7 64.2% 63.7% 74% 98% 1.60
8 72.6% 72.1% 55% 95% 2.00
9 78.7% 80.9% 56% 98% 1.78
10 84.8% 84.1% 36% 99% 1.54
11 88.6% 88.1% 18% 99% 1.48
12 90.7% 92.5% 21% 98% 1.31
13 93.2% 92.9% 12% 98% 1.21
14 94.6% 94.3% 12% 100% 1.24
15 96.0% 96.4% 12% 99% 1.27
16 97.5% 97.2% 4% 99% 1.03
17 97.9% 97.8% 5% 99% 1.11
18 98.6% 96.6% 2% 100% 1.15
19 98.8% 98.2% 3% 99% 1.02
20 99.2% 98.4% 0% 100% 1.00
21 99.2% 98.6% 0% 100% 1.00
22 99.2% 98.8% 0% 100% 1.00
23 99.2% 98.9% 0% 100% 1.00
24 99.2% 99.0% 0% 100% 1.00
25 99.2% 99.1% 0% 100% 1.00

Table 5: Time elapsed when the estimated coverage reached 99%

Cumulative Time (second) Last Interval (second)

CoNLL: LOC 3,362 92
CoNLL: MISC 1,818 61
CoNLL: ORG 5,201 104
CoNLL: PER 2,300 75

GENIA: DNA 33,464 443
GENIA: RNA 822 56
GENIA: cell_line 15,870 284
GENIA: cell_type 13,487 295
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of 100% in real annotation work even if the human anno-
tator scans through all sentences, because there is often
ambiguity in deciding whether a particular named entity
should be annotated or not. Previous studies report that
inter-annotator agreement rates with regards to gene/pro-
tein name annotation are f-scores around 90% [17,18].
We believe that the missing rate of 1% can be an accepta-
ble level of sacrifice, given the cost reduction achieved and
the unavoidable discrepancy made by the human annota-
tor.

At the same time, we should also note that our framework
could be used in conjunction with existing methods for
semi-supervised learning to improve the performance of
the CRF tagger, which in turn will improve the coverage.
It is also possible to improve the performance of the tag-
ger by using external dictionaries or using more sophisti-
cated probabilistic models such as semi-Markov CRFs
[19]. These enhancements should further improve the
coverage, keeping the same degree of cost reduction.

The idea of improving the efficiency of annotation work
by using automatic taggers is certainly not new. Tanabe et
al. [6] applied a gene/protein name tagger to the target
sentences and modified the results manually. Culotta and
McCallum [16] proposed to have the human annotator
select the correct annotation from multiple choices pro-
duced by a CRF tagger for each sentence. Tomanek et al.
[20] discuss the reusability of named entity-annotated
corpora created by an active learning approach and show
that it is possible to build a corpus that is useful to differ-
ent machine learning algorithms to a certain degree.

The limitation of our framework is that it is useful only
when the target named entities are sparse because the
upper bound of cost saving is limited by the proportion of
the relevant sentences in the corpus. Our framework may
therefore not be suitable for a situation where one wants
to make annotations for named entities of many catego-

ries simultaneously (e.g. creating a corpus like GENIA
from scratch). In contrast, our framework should be use-
ful in a situation where one needs to modify or enrich
named entity annotations in an existing corpus, because
the target named entities are almost always sparse in such
cases. We should also note that named entities in full
papers, which recently started to attract much attention,
tend to be more sparse than those in abstracts.

Conclusion
We have presented a simple but powerful framework for
reducing the human effort for making name entity anno-
tations in a corpus. The proposed framework allows us to
annotate almost all named entities of the target category in
the given corpus without having to scan through all the
sentences. The framework also allows us to know when to
stop the annotation process by consulting the estimated
coverage of annotation.

Experimental results demonstrated that the framework
can reduce the number of sentences to be annotated
almost by half, achieving a coverage of 99.0%. Our frame-
work was particularly effective when the target named
entities were very sparse.

Unlike active learning, this work enables us to create a
named entity corpus that is free from the sampling bias
introduced by the active learning strategy. This work will
therefore be especially useful when one needs to enrich an
existing linguistic corpus (e.g. WSJ, GENIA, or PennBioIE)
with named entity annotations for a new semantic cate-
gory.
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