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Recently, several text mining programs have reached a near-practical level of 
performance. Some systems are already being used by biologists and database curators. 
However, it has also been recognized that current Natural Language Processing (NLP) 
and Text Mining (TM) technology is not easy to deploy, since research groups tend to 
develop systems that cater specifically to their own requirements. One of the major 
reasons for the difficulty of deployment of NLP/TM technology is that re-usability and 
interoperability of software tools are typically not considered during development. While 
some effort has been invested in making interoperable NLP/TM toolkits, the developers 
of end-to-end systems still often struggle to reuse NLP/TM tools, and often opt to 
develop similar programs from scratch instead. This is particularly the case in BioNLP, 
since the requirements of biologists are so diverse that NLP tools have to be adapted and 
re-organized in a much more extensive manner than was originally expected. Although 
generic frameworks like UIMA (Unstructured Information Management Architecture) 
provide promising ways to solve this problem, the solution that they provide is only 
partial. In order for truly interoperable toolkits to become a reality, we also need sharable 
type systems and a developer-friendly environment for software integration that includes 
functionality for systematic comparisons of available tools, a simple I/O interface, and 
visualization tools.  In this paper, we describe such an environment that was developed 
based on UIMA, and we show its feasibility through our experience in developing a 
protein-protein interaction (PPI) extraction system.  

1. Introduction 

In the biomedical domain, an increasing number of Text Mining (TM) and 
Natural Language Processing (NLP) tools, including part-of-speech (POS) 
taggers [1], named entity recognizers (NERs) [10], protein name normalizers [2], 
syntactic parsers [3,4], and relation or event extractors (ERs) have been 
developed, and some of them are now ready for biologists and database curators 
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to use for their own purposes [5]. However, it is still very difficult to integrate 
independently developed tools into an aggregated application that achieves a 
specific task. The difficulties are caused not only by differences in programming 
platforms and different input/output data formats, but also by the lack of higher 
level interoperability among modules developed by different groups.  

UIMA, the Unstructured Information Management Architecture [11], was 
originally developed by IBM. It recently became an open project in OASIS and 
Apache. It provides a promising framework for tool integration. UIMA has a set 
of useful functionalities, such as type definitions shared by modules, 
management of complex objects, linkages between multiple annotations, and the 
original text, and a GUI for module integration. However, since UIMA only 
provides a generic framework, it requires a user community to develop their own 
end-to-end analysis pipelines with a set of actual software modules. A few 
attempts have already been made to establish platforms for the biomedical 
domain, including toolkits by the Mayo Clinic [25], the Biomedical Text Mining 
Group at the University of Colorado School of Medicine [6][26], and Jena 
University [22], as well as for the general domain, including toolkits by 
OpenNLP [8], the CMU UIMA component repository [20], and GATE [21] with 
its UIMA interoperability layer.  

However, simply wrapping existing modules for UIMA does not offer a 
complete solution for flexible tool integration, necessary for practical 
applications in the biomedical domain. Users, including both the developers and 
the end-users of TM systems, tend to be confused when choosing appropriate 
modules for their own tasks from a large collection of tools. 

Individual user groups in the biomedical domain have diverse interests. 
Requirements for NLP/TM modules vary significantly depending on their 
interests [18]. For example, an NER module developed for a specific user group 
usually cannot satisfy the needs of another group. Different groups may need 
different types of entities to be recognized. They may also need to process 
different types of texts, such as scientific papers, reports, or medical records. 
Due to this range of needs, significant effort is often required to combine 
modules that were developed independently for different user groups, even after 
they are wrapped for UIMA. (Wrapping a tool for UIMA is a process of adding 
a conversion layer, which wraps the original I/O of the tool in order to 
communicate with the UIMA framework). 

Furthermore, a task in the biomedical domain is composite in nature, from 
the TM/NLP point of view, and can only be solved by combining several 
modules. Although the selection of modules affects the performance of the 
aggregated system, it is difficult to estimate how this selection affects the 
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ultimate performance of the system. Users need careful guidance in the selection 
of modules to be combined. 

In this paper, we discuss our strategy of using comparators and automatic 
generators of processing streams to facilitate module integration and to guide the 
selection of modules.  Taking the extraction of protein-protein interaction (PPI) 
as a typical example of a composite task, we illustrate how our platform helps 
users construct a system for their own needs. 

There are several other technical issues that we encountered as UIMA users. 
For example, the issue of efficiency cannot be ignored, since we want to process 
a large collection of documents including all of Medline and full papers in a 
collection of open access journals in BMC (BioMed Central). From the 
viewpoint of a tool provider, the burden of making an existing module 
compatible with a specific platform should be minimized. Some of these issues 
are discussed in this paper.  

2. Motivation and Background 

2.1. Goal Oriented Evaluation, Module Selection and Inter-operability 

There are standard evaluation metrics for NLP/TM modules, including precision, 
recall, and F-measure. For basic tasks such as sentence splitting, POS tagging, 
and named-entity recognition, these metrics can be estimated using existing 
gold-standard test sets. However, accuracy measurements based on standard test 
sets are sometimes deceptive because the accuracy may change significantly in 
practice, depending on the types of texts and the actual tasks at hand.  

For example, in the bioinformatics task of recognizing occurrences of 
entities of specific types (e.g. cell-lines, cell locations) in text when 
comprehensive lexicons for those entities are available, an NER system for an 
open set of entities (e.g. proteins or metabolites) trained using a gold-standard 
data set may not be the best choice, even if it yields the best performance on a 
standard test set. Moreover, systems which have similar levels of performance 
according to standard metrics often behave differently in specific cases. Because 
these accuracy metrics do not take into account the importance of different types 
of errors to any particular application, the practical utility of two systems with 
seemingly similar levels of accuracy may in fact differ significantly. To users 
and developers alike, a detailed examination of how systems perform (on the 
text they would like to process) is often more important than standard metrics 
and test sets. Naturally, far greater importance is placed in measuring the end-to-
end performance of a composite system than in measuring the performance of 
individual components. 
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In reality, because selection of modules usually affects the performance of 
the entire system, careful selection of modules that are appropriate for a given 
task is crucial. This is the main reason for having a collection of interoperable 
modules. What we need to be able to test is how the ultimate performance will 
be affected by selection of different modules and what would be the best 
combination of modules in terms of the performance of the whole aggregated 
system for the task at hand. 

Since the number of possible combinations of component modules is 
typically large, the evaluation system has to be able to enumerate and execute 
them semi-automatically. This requires a higher level of interoperability for 
individual modules than just wrapping them for UIMA.  

2.2. UIMA  

2.2.1.   CAS and Type System 

The UIMA framework uses the “stand-off annotation” style [16]. The raw text in 
a document is kept unchanged during the analysis process. When processing is 
performed on the text, the result is added as new stand-off annotations with 
references to their positions in the raw text. A Common Analysis Structure 
(CAS) maintains a set of these annotations, which in turn are objects themselves. 
The annotation objects in a CAS belong to types that are defined separately in a 
hierarchical Type System. The features of an annotation*  object have values 
which are typed as well. 

2.2.2.   Components and Component Descriptors 

The analysis process, which includes any sort of processing of the text, is 
performed by one or more Annotators, the smallest processing components in 
UIMA. Components in UIMA are divided into three types: Collection Reader, 
Analysis Engine and CAS Consumer. An Analysis Engine analyzes a document 
and creates annotation objects. For example, a named entity recognizer receives 
a CAS, detects named entities in the text, and adds annotation objects of a 
corresponding type(s) (NamedEntity in our case) to the received CAS. There 
are two types of Analysis Engines. An Analysis Engine with a single Annotator 
is called a Primitive Analysis Engine, and an Analysis Engine with more than 
two Annotators inside is called an Aggregate Analysis Engine. A Collection 

                                                           
* In the UIMA framework, Annotation is a base type which has begin and end 
offset values, as a subtype of the root type TOP. In this paper we call any objects 
(any subtype of TOP) annotations. 
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Reader reads documents from outside of a UIMA framework and generates 
CASs, while a CAS Consumer does not output CASs. 

Every UIMA component (i.e. Collection Reader, Analysis Engine and CAS 
Consumer) has a descriptor XML file, which provides its behavioral 
information. For example, the Capability property in a descriptor file describes 
what types of objects the component may take as input and what types of objects 
it produces as output.  The compatibility of their capabilities is the pre-requisite 
for two components to be combined.  

It is possible to deploy any UIMA component as a SOAP web service. 
Therefore, we can combine a remote component on a web service with local 
component freely inside a UIMA-based system.  

3. Integration Platform and Comparators 

3.1. Shared Type System 

Although UIMA provides a useful set of functionalities for an integration 
platform of NLP/TM tools, users still have to develop the actual platform to use 
these functionalities effectively. The designer of an integration platform must 
make several decisions.  

Firstly, as a crucial decision, the designer must decide how to use types in 
UIMA. At one extreme, the designer may wrap existing programs without using 
explicit types, putting information into a single String field of a common generic 
type. Since compatibility among modules is already automatically guaranteed, 
such a design decision would be easy to follow; however, it would not be 
appropriate if we aim to attain the higher level of inter-operability required for 
goal-oriented module selection and evaluation.  

At the other extreme, the designer may force all modules developed by 
different groups to accept a unique type system which the platform defines. 
While this would make inter-operability readily attainable, it puts too much of a 
burden on the individual modules. In the worst case, we may have to re-program 
all of the tools developed by other groups. Thus, this design is impractical.  

Our decision lies in the middle between these two extremes. That is, if 
necessary, we keep different type systems by individual groups as they are. We 
require, however, that individual type systems have to be related through a 
common, shared type system which our platform defines. Such a shared type 
system can bridge modules with different type systems, though bridging module 
may lose some information during the translation process.  

Whether such a shared type system can be defined or not is dependent on the 
nature of each problem.  For example, a shared type system for POS tags in 
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English can be defined rather easily, since most of POS-related modules, such as 
POS taggers (their output is a sequence of POSs), shallow parsers (their input is 
a sequence of words with their POS assignments), etc., more or less follow the 
well-established types defined by the Penn Treebank [24] tag set for POS types. 

Figure 1 shows a part of our shared type system. We deliberately define a 
highly organized type hierarchy, since the structure of a shared common type 
system directly influences the loss of information during the translation process. 
For instance, it is better to express each POS as a distinct type, not as a String 
feature value, in order to identify each POS uniquely. It is also better to make 
abstract types in hierarchies as much as possible, in order not to lose information 
during the translation between type systems. For example, if a local type system 
has a type of general verb but has no type of past tense verb, then the shared type 
system should have an abstract type (like Verb) in order to capture the local type 
information. 

Secondly we should consider that the type system could be used to compare 
and/or mix similar tools. Types should be defined in a distinct and hierarchical 
manner; both tokenizers and POS taggers generate a variety of tokens, but their 
roles are different when we assume a cascaded pipeline. We defined Token as a 
supertype (tokenizer) and POSToken (POS tagger) as a subtype of Token. Each 
tool should have an individual type to make clear which tool generated which 
instance; this is necessary because each tool may have a slightly different 
definition of output types even if they are the same sort of tools. 

3.2. General Combinatorial Comparison Generator 

Even if the type system is defined in the way previously described, there are still 
some issues to consider when comparing tools. We illustrate these issues using 

 
 

TOOL-SPECIFIC TYPES

PennPOS 

Penn verb1 … …

POS 
tcas.uima.Annotation 
-begin: int  -end: int 

SyntacticAnnotation 

Sentence Phrase Token 

SemanticAnnotation 

NamedEntity Relation 
-ent: FSArray<NamedEntity>

POSToken 
-pos: POS 

RichToken 
-base: String 

uima.jcas.cas.TOP 

UnknownPOS 
-posType: String

ToolAToken

Verb Noun ….. 

ToolBPOSToken

Protein 

ToolCProtein

ProteinProteinInteraction

ToolDPPI

Figure 1 Part of our type system 
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the PPI workflow that we utilized in our experiments. 
Figure 2 shows the workflow of our 

whole PPI system conceptually. If we 
can prepare two or more Annotators for 
some type of the components in the 
workflow (e.g. two sentence detectors 
and three POS taggers), then we could 
make combinations of these tools to 
form a multiplied number of workflow 
patterns (2x3 = 6 patterns). See Table 1 
for the details of UIMA components used in our experiments. 

Comparable Tools 
Sentence 
Detector

Deep 
Parser 

Named Entity 
Recognizer 

POS 
Tagger 

PPI 
Extractor 

AImed 
Collection 

Reader

Comparator 
Evaluator 

Tokenizer 

Figure 2. PPI system workflow (conceptual) 

We made a pattern expansion mechanism which generates possible 
workflow patterns automatically from a user-defined comparable workflow. A 
comparable workflow is a special workflow which explicitly specifies which set 
of Annotators should be compared. Then, users just need to group comparable 
components (e.g. ABNER †  and MedT-NER as a comparable NER group) 
without making any modifications to the original UIMA components. This 
aggregation of comparable Annotators is controlled by our custom workflow 
controller.  

In some cases, a single tool can play two or more roles (e.g. the GENIA 
Tagger performs tokenization, POS tagging, and NER; see F ). It may be 
possible to decompose the original tool into single roles, but in most cases it is 
difficult and unnatural to decompose such a complex tool. We designed our 
comparator to detect possible input combinations automatically by the types of 
previously generated annotations, and the input capability of each posterior 
Annotator. As described in the previous section, Annotator should have 
appropriate capabilities with proper types in order to permit this detection. 

igure 4

                 

When an Annotator requires two or more input types (e.g. our PPI extractor 

                                          Figure 4. Complex tool example

Comparable Tools
GENIA 
Tagger 

OpenNLP 
Sentence 
Detector 

Enju NER 

POS 
Tagger

Tokenizer

Figure 5. Branch flow pattern 

Comparable Tools 
OpenNLP 

S.D.

Enju ABNER 

Stepp 
Tagger 

UIMA 
Tokenizer 

GENIA 
S.D. 

Comparable Tools 

Figure 3. Basic example pattern 

OpenNLP 
Sentence 
Detector 

Enju ABNER 

Stepp 
Tagger 

UIMA 
Tokenizer 

† In the example figures, ABNER requires Sentence to make the explanation 
clearer, though ABNER does not require it in actual usage. 
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requires outputs of a deep parser and a protein NER system), there could be 
different Annotators used in the prior flow (e.g. OpenNLP and GENIA sentence 
detectors in Fi  5). Thus, our comparator calculates such cases automaticallygure . 

Because of limitations of the current Apache UIMA implementation, we 
originally defined AnnotationGroup, each of which holds annotations 
generated by a single Annotator in a specific workflow pattern. An 
AnnotationGroup has dependency links to the prior AnnotationGroups. 
Because an expanded combinatorial workflow is cascaded, AnnotationGroups 
are shared within posterior Annotators in order to increase performance.  

Although it is efficient to share AnnotationGroups, whole combinatorial 
results are put into a single CAS in this design and a CAS may contain a large 
number of annotations. When web services or network communications are used, 
a large CAS could be costly with respect to transmission time, and may 
therefore decrease the performance of the system. In addition it is impossible for 
normal UIMA components to process such a mixture of combinatorial 
annotations. We made a special adapter component which generates a temporary 
CAS by the CAS Multiplier functions. This temporary CAS contains only a set 
of required annotations for each component in order to avoid these problems. 
 
Table 1.List of UIMA-compliant tools that we used in the experiment. 
Legend:         Input type(s) required for that tool         Input required optionally          Output type(s)  
Sentence Token POSToken RichToken Protein Phrase PPI 

GENIA Tagger: Trained on the WSJ, GENIA, and PennBioIE corpora (POS). Uses Maximum 
Entropy [17], trained on the NLPBA data set [9], derived from the GENIA corpus (NER) [15]. 

Enju: HPSG parser with predicate-argument structures (PAS) as well as phrase structures. Although 
trained with newswire articles (Penn Treebank [24]), it can compute accurate analyses of biomedical 
texts due to our method for domain adaptation. The evaluated bio-performance is 86.9 F-score [4]. 

STePP Tagger: Based on probabilistic models, tuned to biomedical text trained by WSJ, GENIA, and 
PennBioIE corpora, with state-of-the-art performance (97.3% on the standard WSJ test set). 

MedT-NER: Statistical recognizer trained on the JNLPBA [9] data. NEs are normalized to Uniprot 
entries to provide a high-quality link into existing databases. When a name is ambiguous between 
several Uniprot entries, a MaxEnt classifier is used to rank the candidate IDs. 

ABNER: From the University of Wisconsin [10], wrapped by the Center for Computational 
Pharmacology at the University of Colorado.  

Akane++: A new version of the AKANE system [12], trained by SVMlight-TK [14,19] and the AImed 
Corpus, achieving state-of-the-art F-measures for PPI using 10-fold cross validation  (F=52- 69). 

Annotation Comparator and Evaluator: Compares annotations using the type system hierarchy to 
decide which annotations can be compared; generates statistical results and visualization. 

UIMA Examples: Provided in the Apache UIMA example. Sentence Splitter and Tokenizer. 

OpenNLP Tools: Part of the OpenNLP project [8], included in the Apache UIMA example. 

AImed Corpus: 225 Medline abstracts with proteins and protein-protein interactions annotated [13].  
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3.3. User- and Developer-Friendly Utilities 

For the end-user utilities, our comparator provides a filtering function and 
visualization of the results, in addition to providing statistical results. 

Web services are a better option when a specific runtime environment or rich 
computational resources are required, when a tool cannot be distributed due to 
licensing issues, or when it is necessary to save the time needed for module 
initialization. We deployed most of our components as SOAP web services so 
that users can launch our entire workflow from any environment.  

We also made a single-click-to-launch system based on the Java Web Start 
technology. Users need not follow any explicit installation process or settings, if 
their machines already have Java installed. 

Although Apache UIMA provides its Java APIs and C++ enhancement kit 
with rich functionality, it is cumbersome for developers to make their existing 
tools UIMA-compliant. For developers, we provide a simpler I/O interface that 
does not depend on any specific programming languages, so that the developers 
do not need to learn anything about Java or UIMA when they need to wrap 
existing tools into UIMA. Wrapper developers should only have to make stand-
off annotations, using specified type and feature names, via the standard I/O 
streams. Our Java adapter then automatically performs all tasks to wrap the tools. 

4. Experiments and Results 

We have performed experiments using our PPI extraction system as an example. 
The PPI system ( ) is similar to our BioCreative PPI system [7]. It differs 
in that we have decomposed the original system into seven different components.  

Figure 2

4.1. Combinatorial Comparison 

As summarized in Table 1, we have several comparable components and AImed 
as gold standard data. In this case, possible combination workflow patterns are 
36 for PosToken, 589 for ProteinProteinInteraction, etc. 

Table 2. Screenshot of a POS combinatorial comparison. Values are
precision/recall in “labeled (unlabeled)” pairs, and total numbers of
instances are shown. 

Figure 6. NER comparison
distribution of precisions (x-
axis) and recalls (y-axis). 

0
100 

100

0
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Table 2 and how a part of the comparison result screenshots 
between these patterns on 20 articles from the AImed corpus. In Table 2, labeled 
scores represent complete matches of every feature of annotations, while 
unlabeled scores ignore primitive fields excluding offsets (e.g. compare offsets 
but ignore protein IDs).  shows a part of PPI extraction results from 
which we discern which combination of tools generate the best result. 

Figure 6 s

Table 3

When neither of compared results include the gold standard data (AImed in 
this case), the comparison results show a similarity of the tools for this specific 
task and data, rather than an evaluation. Even if we lack an annotated corpus, it 
is possible to run tools and compare results in order to understand the 
characteristics of tools depending on the corpus and the tool combinations.  

4.2.  Performance with Multi-threading 

 Apache UIMA provides an option to enable 
multi-threading of a workflow or multi-
deployment of components without 
modifying UIMA components. We have 
tested multi-threading performance and the 
result suggests that we can increase the 
overall performance easily by using a 
parallel architecture. Because CPU 
architectures are evolving rapidly towards 
multi-cores in order to increase global 
performance, the capability of UIMA to 
support multi-threading promises 
considerable advantages, despite the 
wrapper overheads or web service communication overheads. 

Features Prec Recall F1 
DEP 67.6 26.3 37.1 
WORDS 55.7 29.2 37.8 
PAS (Enju) 72.0 28.7 41.0 
DEP+WORDS 59.9 39.3 46.9 
PAS+DEP 68.9 37.8 48.6 
PAS+WORDS 61.3 40.7 48.6 
ALL 64.3 44.1 52.0 
ALL (pairwise) 78.1 62.7 69.5 

Table 3. PPI Evaluated on AImed, with 
5631 protein pairs. (1068 true 
interactions). DEP means our 
dependency parser. Values are 
percentages from 10-fold cross-
validation on abstracts. “pairwise” is the 
widely used 10-fold cross-validation on 
protein pairs. Refer to [23] for details. 

5. Conclusion and Future Work 

Although UIMA provides a general framework with much functionality, we still 
need to fill the gaps between what is already provided and what the users need 
for their specific tasks. Biomedical tasks typically consist of many components, 
and it is necessary to show which sets of tools are most suitable for each specific 
task and data. In this paper, we provided an answer to this problem using 
extraction of protein-protein interaction as an example task.  

With any set of UIMA components that have types designed in the way 
described in this paper, our general combinatorial comparator generates possible 
combinations of tools for a specific workflow and compares/evaluates the results. 
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We are preparing to make a portion of the components and services described in 
this paper available publicly (http://www-tsujii.is.s.u-tokyo.ac.jp/uima/).  

The system shows which combination of components yields the best score, 
and also succeeds in generating comparative results. This helps users to grasp 
the characteristics of and differences between the tools, which cannot be easily 
observed just by the widely used F-score metric. 

Future directions for this work include combining the output of several 
modules of the same kind (such as NER systems) to obtain better results, 
collecting other tools developed by other groups using bridging type systems, 
making machine learning tools UIMA-compliant, and making grid computing 
available with UIMA workflows to increase overall performance. 
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