
FILLING THE GAPS BETWEEN TOOLS AND USERS:
A TOOL COMPARATOR, USING PROTEIN-PROTEIN

INTERACTION AS AN EXAMPLE

YOSHINOBU KANO1, NGAN NGUYEN1, RUNE SÆTRE1, KAZUHIRO YOSHIDA1,
YUSUKE MIYAO1, YOSHIMASA TSURUOKA3, YUICHIRO MATSUBAYASHI1,

SOPHIA ANANIADOU2,3, JUN’ICHI TSUJII1,2,3

1Department of Computer Science, University of Tokyo

Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033 Tokyo

2School of Computer Science, University of Manchester
PO Box 88, Sackville St, MANCHESTER M60 1QD, UK

3NaCTeM (National Centre for Text Mining), Manchester Interdisciplinary Biocentre,

University of Manchester, 131 Princess St, MANCHESTER M1 7DN, UK

Recently, several text mining programs have reached a near-practical level of
performance. Some systems are already being used by biologists and database curators.
However, it has also been recognized that current Natural Language Processing (NLP)
and Text Mining (TM) technology is not easy to deploy, since research groups tend to
develop systems that cater specifically to their own requirements. One of the major
reasons for the difficulty of deployment of NLP/TM technology is that re-usability and
interoperability of software tools are typically not considered during development. While
some effort has been invested in making interoperable NLP/TM toolkits, the developers
of end-to-end systems still often struggle to reuse NLP/TM tools, and often opt to
develop similar programs from scratch instead. This is particularly the case in BioNLP,
since the requirements of biologists are so diverse that NLP tools have to be adapted and
re-organized in a much more extensive manner than was originally expected. Although
generic frameworks like UIMA (Unstructured Information Management Architecture)
provide promising ways to solve this problem, the solution that they provide is only
partial. In order for truly interoperable toolkits to become a reality, we also need sharable
type systems and a developer-friendly environment for software integration that includes
functionality for systematic comparisons of available tools, a simple I/O interface, and
visualization tools. In this paper, we describe such an environment that was developed
based on UIMA, and we show its feasibility through our experience in developing a
protein-protein interaction (PPI) extraction system.

1. Introduction

In the biomedical domain, an increasing number of Text Mining (TM) and
Natural Language Processing (NLP) tools, including part-of-speech (POS)
taggers [1], named entity recognizers (NERs) [10], protein name normalizers [2],
syntactic parsers [3,4], and relation or event extractors (ERs) have been
developed, and some of them are now ready for biologists and database curators

Pacific Symposium on Biocomputing 13:616-627(2008)

to use for their own purposes [5]. However, it is still very difficult to integrate
independently developed tools into an aggregated application that achieves a
specific task. The difficulties are caused not only by differences in programming
platforms and different input/output data formats, but also by the lack of higher
level interoperability among modules developed by different groups.

UIMA, the Unstructured Information Management Architecture [11], was
originally developed by IBM. It recently became an open project in OASIS and
Apache. It provides a promising framework for tool integration. UIMA has a set
of useful functionalities, such as type definitions shared by modules,
management of complex objects, linkages between multiple annotations, and the
original text, and a GUI for module integration. However, since UIMA only
provides a generic framework, it requires a user community to develop their own
end-to-end analysis pipelines with a set of actual software modules. A few
attempts have already been made to establish platforms for the biomedical
domain, including toolkits by the Mayo Clinic [25], the Biomedical Text Mining
Group at the University of Colorado School of Medicine [6][26], and Jena
University [22], as well as for the general domain, including toolkits by
OpenNLP [8], the CMU UIMA component repository [20], and GATE [21] with
its UIMA interoperability layer.

However, simply wrapping existing modules for UIMA does not offer a
complete solution for flexible tool integration, necessary for practical
applications in the biomedical domain. Users, including both the developers and
the end-users of TM systems, tend to be confused when choosing appropriate
modules for their own tasks from a large collection of tools.

Individual user groups in the biomedical domain have diverse interests.
Requirements for NLP/TM modules vary significantly depending on their
interests [18]. For example, an NER module developed for a specific user group
usually cannot satisfy the needs of another group. Different groups may need
different types of entities to be recognized. They may also need to process
different types of texts, such as scientific papers, reports, or medical records.
Due to this range of needs, significant effort is often required to combine
modules that were developed independently for different user groups, even after
they are wrapped for UIMA. (Wrapping a tool for UIMA is a process of adding
a conversion layer, which wraps the original I/O of the tool in order to
communicate with the UIMA framework).

Furthermore, a task in the biomedical domain is composite in nature, from
the TM/NLP point of view, and can only be solved by combining several
modules. Although the selection of modules affects the performance of the
aggregated system, it is difficult to estimate how this selection affects the

Pacific Symposium on Biocomputing 13:616-627(2008)

ultimate performance of the system. Users need careful guidance in the selection
of modules to be combined.

In this paper, we discuss our strategy of using comparators and automatic
generators of processing streams to facilitate module integration and to guide the
selection of modules. Taking the extraction of protein-protein interaction (PPI)
as a typical example of a composite task, we illustrate how our platform helps
users construct a system for their own needs.

There are several other technical issues that we encountered as UIMA users.
For example, the issue of efficiency cannot be ignored, since we want to process
a large collection of documents including all of Medline and full papers in a
collection of open access journals in BMC (BioMed Central). From the
viewpoint of a tool provider, the burden of making an existing module
compatible with a specific platform should be minimized. Some of these issues
are discussed in this paper.

2. Motivation and Background

2.1. Goal Oriented Evaluation, Module Selection and Inter-operability

There are standard evaluation metrics for NLP/TM modules, including precision,
recall, and F-measure. For basic tasks such as sentence splitting, POS tagging,
and named-entity recognition, these metrics can be estimated using existing
gold-standard test sets. However, accuracy measurements based on standard test
sets are sometimes deceptive because the accuracy may change significantly in
practice, depending on the types of texts and the actual tasks at hand.

For example, in the bioinformatics task of recognizing occurrences of
entities of specific types (e.g. cell-lines, cell locations) in text when
comprehensive lexicons for those entities are available, an NER system for an
open set of entities (e.g. proteins or metabolites) trained using a gold-standard
data set may not be the best choice, even if it yields the best performance on a
standard test set. Moreover, systems which have similar levels of performance
according to standard metrics often behave differently in specific cases. Because
these accuracy metrics do not take into account the importance of different types
of errors to any particular application, the practical utility of two systems with
seemingly similar levels of accuracy may in fact differ significantly. To users
and developers alike, a detailed examination of how systems perform (on the
text they would like to process) is often more important than standard metrics
and test sets. Naturally, far greater importance is placed in measuring the end-to-
end performance of a composite system than in measuring the performance of
individual components.

Pacific Symposium on Biocomputing 13:616-627(2008)

In reality, because selection of modules usually affects the performance of
the entire system, careful selection of modules that are appropriate for a given
task is crucial. This is the main reason for having a collection of interoperable
modules. What we need to be able to test is how the ultimate performance will
be affected by selection of different modules and what would be the best
combination of modules in terms of the performance of the whole aggregated
system for the task at hand.

Since the number of possible combinations of component modules is
typically large, the evaluation system has to be able to enumerate and execute
them semi-automatically. This requires a higher level of interoperability for
individual modules than just wrapping them for UIMA.

2.2. UIMA

2.2.1. CAS and Type System

The UIMA framework uses the “stand-off annotation” style [16]. The raw text in
a document is kept unchanged during the analysis process. When processing is
performed on the text, the result is added as new stand-off annotations with
references to their positions in the raw text. A Common Analysis Structure
(CAS) maintains a set of these annotations, which in turn are objects themselves.
The annotation objects in a CAS belong to types that are defined separately in a
hierarchical Type System. The features of an annotation* object have values
which are typed as well.

2.2.2. Components and Component Descriptors

The analysis process, which includes any sort of processing of the text, is
performed by one or more Annotators, the smallest processing components in
UIMA. Components in UIMA are divided into three types: Collection Reader,
Analysis Engine and CAS Consumer. An Analysis Engine analyzes a document
and creates annotation objects. For example, a named entity recognizer receives
a CAS, detects named entities in the text, and adds annotation objects of a
corresponding type(s) (NamedEntity in our case) to the received CAS. There
are two types of Analysis Engines. An Analysis Engine with a single Annotator
is called a Primitive Analysis Engine, and an Analysis Engine with more than
two Annotators inside is called an Aggregate Analysis Engine. A Collection

* In the UIMA framework, Annotation is a base type which has begin and end
offset values, as a subtype of the root type TOP. In this paper we call any objects
(any subtype of TOP) annotations.

Pacific Symposium on Biocomputing 13:616-627(2008)

Reader reads documents from outside of a UIMA framework and generates
CASs, while a CAS Consumer does not output CASs.

Every UIMA component (i.e. Collection Reader, Analysis Engine and CAS
Consumer) has a descriptor XML file, which provides its behavioral
information. For example, the Capability property in a descriptor file describes
what types of objects the component may take as input and what types of objects
it produces as output. The compatibility of their capabilities is the pre-requisite
for two components to be combined.

It is possible to deploy any UIMA component as a SOAP web service.
Therefore, we can combine a remote component on a web service with local
component freely inside a UIMA-based system.

3. Integration Platform and Comparators

3.1. Shared Type System

Although UIMA provides a useful set of functionalities for an integration
platform of NLP/TM tools, users still have to develop the actual platform to use
these functionalities effectively. The designer of an integration platform must
make several decisions.

Firstly, as a crucial decision, the designer must decide how to use types in
UIMA. At one extreme, the designer may wrap existing programs without using
explicit types, putting information into a single String field of a common generic
type. Since compatibility among modules is already automatically guaranteed,
such a design decision would be easy to follow; however, it would not be
appropriate if we aim to attain the higher level of inter-operability required for
goal-oriented module selection and evaluation.

At the other extreme, the designer may force all modules developed by
different groups to accept a unique type system which the platform defines.
While this would make inter-operability readily attainable, it puts too much of a
burden on the individual modules. In the worst case, we may have to re-program
all of the tools developed by other groups. Thus, this design is impractical.

Our decision lies in the middle between these two extremes. That is, if
necessary, we keep different type systems by individual groups as they are. We
require, however, that individual type systems have to be related through a
common, shared type system which our platform defines. Such a shared type
system can bridge modules with different type systems, though bridging module
may lose some information during the translation process.

Whether such a shared type system can be defined or not is dependent on the
nature of each problem. For example, a shared type system for POS tags in

Pacific Symposium on Biocomputing 13:616-627(2008)

English can be defined rather easily, since most of POS-related modules, such as
POS taggers (their output is a sequence of POSs), shallow parsers (their input is
a sequence of words with their POS assignments), etc., more or less follow the
well-established types defined by the Penn Treebank [24] tag set for POS types.

Figure 1 shows a part of our shared type system. We deliberately define a
highly organized type hierarchy, since the structure of a shared common type
system directly influences the loss of information during the translation process.
For instance, it is better to express each POS as a distinct type, not as a String
feature value, in order to identify each POS uniquely. It is also better to make
abstract types in hierarchies as much as possible, in order not to lose information
during the translation between type systems. For example, if a local type system
has a type of general verb but has no type of past tense verb, then the shared type
system should have an abstract type (like Verb) in order to capture the local type
information.

Secondly we should consider that the type system could be used to compare
and/or mix similar tools. Types should be defined in a distinct and hierarchical
manner; both tokenizers and POS taggers generate a variety of tokens, but their
roles are different when we assume a cascaded pipeline. We defined Token as a
supertype (tokenizer) and POSToken (POS tagger) as a subtype of Token. Each
tool should have an individual type to make clear which tool generated which
instance; this is necessary because each tool may have a slightly different
definition of output types even if they are the same sort of tools.

3.2. General Combinatorial Comparison Generator

Even if the type system is defined in the way previously described, there are still
some issues to consider when comparing tools. We illustrate these issues using

TOOL-SPECIFIC TYPES

PennPOS

Penn verb1 … …

POS
tcas.uima.Annotation
-begin: int -end: int

SyntacticAnnotation

Sentence Phrase Token

SemanticAnnotation

NamedEntity Relation
-ent: FSArray<NamedEntity>

POSToken
-pos: POS

RichToken
-base: String

uima.jcas.cas.TOP

UnknownPOS
-posType: String

ToolAToken

Verb Noun …..

ToolBPOSToken

Protein

ToolCProtein

ProteinProteinInteraction

ToolDPPI

Figure 1 Part of our type system

Pacific Symposium on Biocomputing 13:616-627(2008)

the PPI workflow that we utilized in our experiments.
Figure 2 shows the workflow of our

whole PPI system conceptually. If we
can prepare two or more Annotators for
some type of the components in the
workflow (e.g. two sentence detectors
and three POS taggers), then we could
make combinations of these tools to
form a multiplied number of workflow
patterns (2x3 = 6 patterns). See Table 1
for the details of UIMA components used in our experiments.

Comparable Tools
Sentence
Detector

Deep
Parser

Named Entity
Recognizer

POS
Tagger

PPI
Extractor

AImed
Collection

Reader

Comparator
Evaluator

Tokenizer

Figure 2. PPI system workflow (conceptual)

We made a pattern expansion mechanism which generates possible
workflow patterns automatically from a user-defined comparable workflow. A
comparable workflow is a special workflow which explicitly specifies which set
of Annotators should be compared. Then, users just need to group comparable
components (e.g. ABNER † and MedT-NER as a comparable NER group)
without making any modifications to the original UIMA components. This
aggregation of comparable Annotators is controlled by our custom workflow
controller.

In some cases, a single tool can play two or more roles (e.g. the GENIA
Tagger performs tokenization, POS tagging, and NER; see F). It may be
possible to decompose the original tool into single roles, but in most cases it is
difficult and unnatural to decompose such a complex tool. We designed our
comparator to detect possible input combinations automatically by the types of
previously generated annotations, and the input capability of each posterior
Annotator. As described in the previous section, Annotator should have
appropriate capabilities with proper types in order to permit this detection.

igure 4

When an Annotator requires two or more input types (e.g. our PPI extractor

 Figure 4. Complex tool example

Comparable Tools
GENIA
Tagger

OpenNLP
Sentence
Detector

Enju NER

POS
Tagger

Tokenizer

Figure 5. Branch flow pattern

Comparable Tools
OpenNLP

S.D.

Enju ABNER

Stepp
Tagger

UIMA
Tokenizer

GENIA
S.D.

Comparable Tools

Figure 3. Basic example pattern

OpenNLP
Sentence
Detector

Enju ABNER

Stepp
Tagger

UIMA
Tokenizer

† In the example figures, ABNER requires Sentence to make the explanation
clearer, though ABNER does not require it in actual usage.

Pacific Symposium on Biocomputing 13:616-627(2008)

requires outputs of a deep parser and a protein NER system), there could be
different Annotators used in the prior flow (e.g. OpenNLP and GENIA sentence
detectors in Fi 5). Thus, our comparator calculates such cases automaticallygure .

Because of limitations of the current Apache UIMA implementation, we
originally defined AnnotationGroup, each of which holds annotations
generated by a single Annotator in a specific workflow pattern. An
AnnotationGroup has dependency links to the prior AnnotationGroups.
Because an expanded combinatorial workflow is cascaded, AnnotationGroups
are shared within posterior Annotators in order to increase performance.

Although it is efficient to share AnnotationGroups, whole combinatorial
results are put into a single CAS in this design and a CAS may contain a large
number of annotations. When web services or network communications are used,
a large CAS could be costly with respect to transmission time, and may
therefore decrease the performance of the system. In addition it is impossible for
normal UIMA components to process such a mixture of combinatorial
annotations. We made a special adapter component which generates a temporary
CAS by the CAS Multiplier functions. This temporary CAS contains only a set
of required annotations for each component in order to avoid these problems.

Table 1.List of UIMA-compliant tools that we used in the experiment.
Legend: Input type(s) required for that tool Input required optionally Output type(s)
Sentence Token POSToken RichToken Protein Phrase PPI

GENIA Tagger: Trained on the WSJ, GENIA, and PennBioIE corpora (POS). Uses Maximum
Entropy [17], trained on the NLPBA data set [9], derived from the GENIA corpus (NER) [15].

Enju: HPSG parser with predicate-argument structures (PAS) as well as phrase structures. Although
trained with newswire articles (Penn Treebank [24]), it can compute accurate analyses of biomedical
texts due to our method for domain adaptation. The evaluated bio-performance is 86.9 F-score [4].

STePP Tagger: Based on probabilistic models, tuned to biomedical text trained by WSJ, GENIA, and
PennBioIE corpora, with state-of-the-art performance (97.3% on the standard WSJ test set).

MedT-NER: Statistical recognizer trained on the JNLPBA [9] data. NEs are normalized to Uniprot
entries to provide a high-quality link into existing databases. When a name is ambiguous between
several Uniprot entries, a MaxEnt classifier is used to rank the candidate IDs.

ABNER: From the University of Wisconsin [10], wrapped by the Center for Computational
Pharmacology at the University of Colorado.

Akane++: A new version of the AKANE system [12], trained by SVMlight-TK [14,19] and the AImed
Corpus, achieving state-of-the-art F-measures for PPI using 10-fold cross validation (F=52- 69).

Annotation Comparator and Evaluator: Compares annotations using the type system hierarchy to
decide which annotations can be compared; generates statistical results and visualization.

UIMA Examples: Provided in the Apache UIMA example. Sentence Splitter and Tokenizer.

OpenNLP Tools: Part of the OpenNLP project [8], included in the Apache UIMA example.

AImed Corpus: 225 Medline abstracts with proteins and protein-protein interactions annotated [13].

Pacific Symposium on Biocomputing 13:616-627(2008)

3.3. User- and Developer-Friendly Utilities

For the end-user utilities, our comparator provides a filtering function and
visualization of the results, in addition to providing statistical results.

Web services are a better option when a specific runtime environment or rich
computational resources are required, when a tool cannot be distributed due to
licensing issues, or when it is necessary to save the time needed for module
initialization. We deployed most of our components as SOAP web services so
that users can launch our entire workflow from any environment.

We also made a single-click-to-launch system based on the Java Web Start
technology. Users need not follow any explicit installation process or settings, if
their machines already have Java installed.

Although Apache UIMA provides its Java APIs and C++ enhancement kit
with rich functionality, it is cumbersome for developers to make their existing
tools UIMA-compliant. For developers, we provide a simpler I/O interface that
does not depend on any specific programming languages, so that the developers
do not need to learn anything about Java or UIMA when they need to wrap
existing tools into UIMA. Wrapper developers should only have to make stand-
off annotations, using specified type and feature names, via the standard I/O
streams. Our Java adapter then automatically performs all tasks to wrap the tools.

4. Experiments and Results

We have performed experiments using our PPI extraction system as an example.
The PPI system () is similar to our BioCreative PPI system [7]. It differs
in that we have decomposed the original system into seven different components.

Figure 2

4.1. Combinatorial Comparison

As summarized in Table 1, we have several comparable components and AImed
as gold standard data. In this case, possible combination workflow patterns are
36 for PosToken, 589 for ProteinProteinInteraction, etc.

Table 2. Screenshot of a POS combinatorial comparison. Values are
precision/recall in “labeled (unlabeled)” pairs, and total numbers of
instances are shown.

Figure 6. NER comparison
distribution of precisions (x-
axis) and recalls (y-axis).

0
100

100

0

Pacific Symposium on Biocomputing 13:616-627(2008)

Table 2 and how a part of the comparison result screenshots
between these patterns on 20 articles from the AImed corpus. In Table 2, labeled
scores represent complete matches of every feature of annotations, while
unlabeled scores ignore primitive fields excluding offsets (e.g. compare offsets
but ignore protein IDs). shows a part of PPI extraction results from
which we discern which combination of tools generate the best result.

Figure 6 s

Table 3

When neither of compared results include the gold standard data (AImed in
this case), the comparison results show a similarity of the tools for this specific
task and data, rather than an evaluation. Even if we lack an annotated corpus, it
is possible to run tools and compare results in order to understand the
characteristics of tools depending on the corpus and the tool combinations.

4.2. Performance with Multi-threading

 Apache UIMA provides an option to enable
multi-threading of a workflow or multi-
deployment of components without
modifying UIMA components. We have
tested multi-threading performance and the
result suggests that we can increase the
overall performance easily by using a
parallel architecture. Because CPU
architectures are evolving rapidly towards
multi-cores in order to increase global
performance, the capability of UIMA to
support multi-threading promises
considerable advantages, despite the
wrapper overheads or web service communication overheads.

Features Prec Recall F1
DEP 67.6 26.3 37.1
WORDS 55.7 29.2 37.8
PAS (Enju) 72.0 28.7 41.0
DEP+WORDS 59.9 39.3 46.9
PAS+DEP 68.9 37.8 48.6
PAS+WORDS 61.3 40.7 48.6
ALL 64.3 44.1 52.0
ALL (pairwise) 78.1 62.7 69.5

Table 3. PPI Evaluated on AImed, with
5631 protein pairs. (1068 true
interactions). DEP means our
dependency parser. Values are
percentages from 10-fold cross-
validation on abstracts. “pairwise” is the
widely used 10-fold cross-validation on
protein pairs. Refer to [23] for details.

5. Conclusion and Future Work

Although UIMA provides a general framework with much functionality, we still
need to fill the gaps between what is already provided and what the users need
for their specific tasks. Biomedical tasks typically consist of many components,
and it is necessary to show which sets of tools are most suitable for each specific
task and data. In this paper, we provided an answer to this problem using
extraction of protein-protein interaction as an example task.

With any set of UIMA components that have types designed in the way
described in this paper, our general combinatorial comparator generates possible
combinations of tools for a specific workflow and compares/evaluates the results.

Pacific Symposium on Biocomputing 13:616-627(2008)

We are preparing to make a portion of the components and services described in
this paper available publicly (http://www-tsujii.is.s.u-tokyo.ac.jp/uima/).

The system shows which combination of components yields the best score,
and also succeeds in generating comparative results. This helps users to grasp
the characteristics of and differences between the tools, which cannot be easily
observed just by the widely used F-score metric.

Future directions for this work include combining the output of several
modules of the same kind (such as NER systems) to obtain better results,
collecting other tools developed by other groups using bridging type systems,
making machine learning tools UIMA-compliant, and making grid computing
available with UIMA workflows to increase overall performance.

 Acknowledgments

We wish to thank Dr. Lawrence Hunter’s text mining group at the Center for
Computational Pharmacology for discussing with us and making their tools
available for this research. This work was partially supported by NaCTeM (the
UK National Centre for Text Mining), Grant-in-Aid for Specially Promoted
Research (MEXT, Japan) and Genome Network Project (MEXT, Japan).
NaCTeM is jointly funded by JISC/BBSRC/EPSRC.

References

1. Y. Tsuruoka, Y. Tateishi, J. D. Kim, T. Ohta, J. Tsujii and S. Ananiadou,
Developing a Robust Part-of-Speech Tagger for Biomedical Text. Volos: In
the Advances in Informatics. LNCS 3746: pp. 382-392 (2005).

2. N. Okazaki and S. Ananiadou, Building an abbreviation dictionary using a
term recognition approach. Bioinformatics, pp. 22(24):3089-3095 (2006).

3. S. Pyysalo, T. Salakoski, S. Aubin and A. Nazarenko, Lexical adaptation of
Link grammar to the biomedical sublanguage: a comparative evaluation of
three approaches. BMC Bioinformatics. Suppl 3:S2 (2006).

4. T. Hara, Y. Miyao and J. Tsujii, Evaluating Impact of Re-training a Lexical
Disambiguation Model on Domain Adaptation of an HPSG Parser. In the
Proceedings of IWPT 2007. Prague, Czech Republic, June 2007.

5. L. Hirschman, M. Krallinger and A. Valencia, Proc. of Second BioCreative
Challenge Evaluation Workshop. Madrid: Centro Nacional de
Investigaciones Oncologicas (2007).

6. H. L. Johnson, W. A. Baumgartner, M. Krallinger, K. B. Cohen and L.
Hunter. Corpus refactoring: a feasibility study. J Biomed Discov
Collab pp. 2:4 (2007).

7. R. Sætre, K. Yoshida, A. Yakushiji, Y. Miyao, Y. Matsubayashi and T.
Ohta, AKANE System: Protein-Protein Interaction Pairs in the
BioCreAtIvE2 Challenge, PPI-IPS subtask (2006).

Pacific Symposium on Biocomputing 13:616-627(2008)

http://www-tsujii.is.s.u-tokyo.ac.jp/uima/

8. J. Baldrige and T. Morton, OpenNLP. http://opennlp.sourceforge.net/
9. J. D. Kim, T. Ohta, Y. Tsuruoka, Y. Tateishi and N. Collier, Introduction to

the bio-entity recognition task at JNLPBA. Geneva, Switzerland. JNLPBA-
04. pp. 70–75 (2004).

10. B. Settles, ABNER: an open source tool for automatically tagging genes,
proteins, and other entity names in text. Wisconsin: Bioinformatics. pp.
21(14):3191-2 (2005).

11. A. Lally and D. Ferrucci, Building an Example Application with the
Unstructured Information Management Architecture, IBM Systems Journal
43, No. 3, pp. 455–475 (2004).

12. A. Yakushiji, Relation Information Extraction Using Deep Syntactic
Analysis, PhD. thesis. University of Tokyo (2006).

13. R. C. Bunescu and R. J. Mooney, Subsequence kernels for relation
extraction. NIPS (2005).

14. T. Joachims, Making large-Scale SVM Learning Practical. In B. Schölkopf
and C. Burges and A. Smola (ed.), Advances in Kernel Methods - Support
Vector Learning, MIT-Press (1999).

15. J. D. Kim, T. Ohta, Y. Tateishi, and J. Tsujii, GENIA corpus - a
semantically annotated corpus for bio-textmining. Bioinformatics. pp.
19(suppl. 1):i180–i182 (2003).

16. D. Ferrucci et al. Towards an Interoperability Standard for Text and Multi-
Modal Analytics. IBM Research Report, RC24122 (2006).

17. A. L. Berger, S. D. Pietra, and V. J. D. Pietra, A maximum entropy
approach to natural language. Comp. Ling., pp. 22(1):39–71 (1996).

18. S. Ananiadou, D. B. Kell and J. Tsujii, Text mining and its potential
applications in systems biology. Trends Biotechnol, Vol. 24 (2006).

19. A. Moschitti, Making tree kernels practical for natural language learning.
Trento, Italy. In Proc. EACL-2006.

20. The Carnegie Mellon University, UIMA component repository.
http://uima.lti.cs.cmu.edu/

21. H. Cunningham, D. Maynard, K. Bontcheva and V. Tablan. GATE: an
Architecture for Development of Robust HLT. In Proc. ACL-2002.

22. The JULIE Lab (the Jena University Language & Information Engineering
Lab). http://www.julielab.de/

23. R. Sætre et al. Syntactic features for protein-protein
interaction extraction. LBM2007, to be submitted.

24. M. P. Marcus, B. Santorini, and M. A. Marcinkiewicz. Building a large
annotated corpus of english: The penn treebank. Comp. Ling. 19:313--330
(1993).

25. S. Pakhomov, J. Buntrock, P. Duffy. High Throughput Modularized NLP
System for Clinical Text (Interactive Poster). ACL 2005; Ann Arbor, MI.

26. W. A. Baumgartner, Z Lu, H. L. Johnson, J. G. Caporaso, J. Paquette, A.
Lindemann, E. K. White, O. Medvedeva, L. M. Fox, K. B. Cohen, and L.
Hunter. An integrated approach to concept recognition in biomedical text.
Proc. of the Second BioCreative Challenge Evaluation Workshop (2006).

Pacific Symposium on Biocomputing 13:616-627(2008)

http://www.julielab.de/

	1. Introduction
	2. Motivation and Background
	2.1. Goal Oriented Evaluation, Module Selection and Inter-operability
	2.2. UIMA
	2.2.1. CAS and Type System

	2.2.2. Components and Component Descriptors

	3. Integration Platform and Comparators
	3.1. Shared Type System
	3.2. General Combinatorial Comparison Generator
	3.3. User- and Developer-Friendly Utilities

	4. Experiments and Results
	4.1. Combinatorial Comparison
	 Performance with Multi-threading

	5. Conclusion and Future Work
	 Acknowledgments

