@,

BiolVled Central

Research article

Corpus annotation for mining biomedical events from literature
Jin-Dong Kim*!, Tomoko Ohta! and Jun'ichi Tsujiil2:3

BIVIC Bioinformatics

Address: 'Department of Computer Science, School of Information Science and Technology, University of Tokyo, Tokyo, Japan, 2School of
Computer Science, University of Manchester, Manchester, UK and 3National Centre for Text Mining, University of Manchester, Manchester, UK

Email: Jin-Dong Kim* - jdkim@is.s.u-tokyo.ac.jp; Tomoko Ohta - okap@is.s.u-tokyo.ac.jp; Jun'ichi Tsujii - tsujii@is.s.u-tokyo.ac.jp
* Corresponding author

Published: 8 January 2008
BMC Bioinformatics 2008, 9:10  doi:10.1186/1471-2105-9-10

Received: 26 July 2007
Accepted: 8 January 2008

This article is available from: http://www.biomedcentral.com/1471-2105/9/10

© 2008 Kim et al; licensee BioMed Central Ltd.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Background: Advanced Text Mining (TM) such as semantic enrichment of papers, event or
relation extraction, and intelligent Question Answering have increasingly attracted attention in the
bio-medical domain. For such attempts to succeed, text annotation from the biological point of
view is indispensable. However, due to the complexity of the task, semantic annotation has never
been tried on a large scale, apart from relatively simple term annotation.

Results: We have completed a new type of semantic annotation, event annotation, which is an
addition to the existing annotations in the GENIA corpus. The corpus has already been annotated
with POS (Parts of Speech), syntactic trees, terms, etc. The new annotation was made on half of
the GENIA corpus, consisting of 1,000 Medline abstracts. It contains 9,372 sentences in which
36,114 events are identified. The major challenges during event annotation were () to design a
scheme of annotation which meets specific requirements of text annotation, (2) to achieve biology-
oriented annotation which reflect biologists' interpretation of text, and (3) to ensure the
homogeneity of annotation quality across annotators. To meet these challenges, we introduced
new concepts such as Single-facet Annotation and Semantic Typing, which have collectively
contributed to successful completion of a large scale annotation.

Conclusion: The resulting event-annotated corpus is the largest and one of the best in quality
among similar annotation efforts. We expect it to become a valuable resource for NLP (Natural
Language Processing)-based TM in the bio-medical domain.

advanced NLP software which uses grammatical knowl-

Background

Due to the ever-increasing amount of scientific articles in
the bio-medical domain, Text Mining (TM) has been rec-
ognized as one of the key technologies for future bio-med-
ical research [1-8]. In particular, since the limit of simple
TM techniques which treat text as a bag of words has
become apparent, there has been increased interest in
more sophisticated, Natural Language Processing (NLP)-
based TM. NLP as a field has been engaged in computer
processing of structure of a sentence or text. Recently,

edge and/or machine learning techniques has been
increasingly applied to TM for the bio-medical domain [9-
21].

For NLP techniques to be successfully applied to text in
the bio-medical domain, we first have to construct
resources specifically designed for NLP in this domain.
Since vocabularies are highly dependent on application
domains and since text in the bio-medical domain is full
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of special technical terms, lexicons that associate terms in
the domain with their linguistic and semantic properties
are indispensable. Recently, several comprehensive lexi-
cons of the domain have been constructed and made pub-
licly available. These lexical resources will bring further
progress in NLP-based TM for the domain [22-28].

Less recognized was the necessity of another type of
resource for NLP: annotated corpora [29,30]. In the bio-
medical domain, not only do special terms appear, but in
addition common words are used differently with differ-
ent meanings. Because of this, we need to re-train or adapt
NLP programs for the domain. For example, since the sta-
tistical distributions of sequences of part-of-speech (POS)
and local syntactic trees are different, POS taggers and syn-
tactic parsers have to be adapted for the domain. For
empirical systems, this adaptation requires corpora anno-
tated in terms of POS and syntactic trees. In earlier work,
our laboratory constructed such an annotated corpus, the
GENIA corpus, and made it publicly available to the com-
munity [31-33]. Since that time, the GENIA corpus,
together with other similar corpora like PennBiolE [34],
GENETAG [35], etc., has been used successfully by many
groups to develop NLP tools for the domain [36-39].

In this paper, we focus on a new type of annotation, event
annotation, recently added to the GENIA corpus. Event
annotation belongs to what we call biological annotation. In
contrast with linguistic annotation such as POS, or shallow
or deep tree annotation, biological annotation is per-
formed by biologists, not by linguists. The goal of biolog-
ical annotation is to identify what kinds of biological
information appear in which part of text, while linguistic
annotation focuses on linguistic properties of text in the
domain. The term annotation in GENIA is one example of
biological annotation. It identifies text spans in which
biological entities such as proteins, DNA, RNA, and cellu-
lar locations actually appear. As with the POS and tree
annotations, the term annotation of the GENIA corpus
has been widely used for training NLP tools such as
Named Entity Recognizers (NERs) [40-44].

Biological annotation is different in nature from linguistic
annotation. In linguistic annotation, we can use existing
annotation frameworks designed for the general domain,
with few changes. In the GENIA corpus, we used the same
set of POS tags and phrase tags developed for the Penn
Treebank [45]. In contrast, the biological annotation is
domain-dependent by definition. For the term annota-
tion, we had to develop our own ontology of term classes
(the GENIA term ontology) for the domain [46].

Though both the term and event annotations belong to
the class of biological annotations, we found event anno-
tation to be much more complicated and challenging
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than term annotation. Most terms denote ontologically
simple entities, e.g. un-analyzable basic units. Even
though some entities have internal structures which need
a hierarchical structure based on meronymy, their rela-
tions are grounded in the concrete physical world. Fur-
thermore, in general, terms appear as continuous spans in
text, e.g. according to [32], 98% of terms appear in contin-
uous spans.

An event, on the other hand, is not an un-analyzable unit.
It has its own internal structure and it involves biological
entities as its participants. The relationships between an
event and its participants, those among events themselves
such as macro- and micro-events, and the causes of events
as well as their consequences, are highly dependent on the
conceptualization of events by biologists. The relation-
ship between a macro-event and its micro-events, for
example, can be seen as a Part-Whole relation, analogous
to a protein and its domains. However, this relationship is
far more subtle than those found among physical entities.
Furthermore, since each participant in an event is mapped
to a span of text, the description of an event as a whole is
usually spread over several discontinuous spans in text.
Compared with entities denoted by terms, events and
their identification in text require much more careful
examination in terms of their internal structures and their
organization into units. In particular, conception of
events and their relationships such as causality reflects an
intuitive way of seeing the world. Linguistic expressions of
events are strongly affected by this conception. Because
our intuitive way of seeing the world is somewhat differ-
ent from the scientific way of understanding the world,
existing biological ontologies alone cannot solve all the
ontological issues involved in annotating events in text.
We defined the GENIA event ontology, which meets the
requirements of text annotation, by referring to existing
ontologies, mainly Gene Ontology (GO) [47].

The approach to domain-specific event annotation that
we adopt in the GENIA project is related to well-known
general-domain annotation efforts like Propbank [48,49]
and FrameNet [50,51]. All of these projects aim to identify
events and their semantic participants in text, however a
key difference among them is that they make different
assumptions about the relationship between syntactic and
semantic annotation.

In PropBank, annotation is performed on the syntactic
structures of the Penn Treebank. Annotators find and clas-
sify the noun phrases (NPs) that are semantically related
to a given verb, and the vocabulary of classes that can be
assigned is verb-specific. Some semantic annotation work
in biology follows this annotation style [52-54], which
demonstrates a progressive analysis of linguistic struc-
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tures: from constituent structure to predicate-argument
structure.

In contrast, FrameNet does not explicitly use constituent
structure as the basis for semantic annotation. Instead, the
semantic annotation abstracts away from syntactic differ-
ences as well as lexical differences. Sentences are labeled
using a vocabulary of semantic frames, and a group of
words share the same frame when they denote the same
class of events (e.g. "retail", "sell", and "vend" share the
frame of commerce_sell).

Since semantic annotation in the FrameNet style abstracts
away from syntactic differences, it is closer to the represen-
tation we would like to use for text mining. However the
frame classification is still based on general-domain frame
semantics. Both FrameNet and Propbank annotation
styles require annotators who are familiar with their
respective linguistic formalisms.

For biological annotation in GENIA, our goal is to use
annotators who are biologists, in order to get qualified
interpretations from a biological perspective. These anno-
tators are not systematically aware of linguistic phenom-
ena. As a result, our event classification is information-
centered, and can be directly mapped to domain knowl-
edge without reference to syntactic or frame-semantic the-

ory.

The disadvantage of this approach is higher inter-annota-
tor discrepancy [55]. While event annotation is performed
based on the assertions made in the text, to map the indi-
vidual assertions with corresponding event classes, anno-
tators depend on inference. Since inference is affected by
the annotator's background knowledge, without appro-
priate control, annotation of the same text may differ
from one biologist to another.

In order to minimize discrepancies and maintain the
quality of annotation, we have introduced several meas-
ures. Text-bound Annotation requires annotators to indicate
clues in the text for every annotation they make. We have
also developed a tool, XConc, which provides multi-lay-
ered annotation, semantic type checking, and detection of
anomalies in the resulting annotations. The annotation
guidelines which have been developed during the event
annotation also played a key role. The guidelines are writ-
ten in plain language, and they include many examples of
what constitutes appropriate textual evidence for an anno-
tation in GENIA. This helps to define the scope of allowa-
ble inferences without using technical definitions that are
unfamiliar to our annotators.

After a period of trial and error which lead to initial anno-
tation guidelines, we have completed the annotation of
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1,000 abstracts, half of the whole GENIA corpus, with
high quality. The annotated corpus consists of 9,372 sen-
tences and 36,114 annotated events, which is by far the
largest among similar attempts [53,56]. We will make the
annotation results available to the community, and it is
reasonable to expect that the corpus will contribute to fur-
ther progress in NLP-based TM techniques, including
event or relation extraction [57-59], intelligent informa-
tion retrieval [13,60], semantic enrichment of text [61],
and integration of text information with pathway data-
bases [11,58].

Results and Discussion

Overview of the GENIA corpus

The event annotation presented here builds on our earlier
work in extracting the GENIA corpus and annotating it
with linguistic features and biological terms. The docu-
ments in the corpus come from the Medline database,
which covers a broad range of domains in bio-medicine.
However, since we are interested in providing semanti-
cally rich annotation for text mining in molecular biology,
we have focused on a much smaller, semantically homo-
geneous subject domain: biological reactions concerning
transcription factors in human blood cells. We used a
search query, "Humans" [MeSH] AND "Blood Cells"
[MeSH|] AND "Transcription Factors" [MeSH] to retrieve a
set of articles, and then chose 2,000 of these articles for
our annotation.

The biological annotations in the GENIA corpus include
term annotation, which was completed in earlier work,
and the event annotation described in this paper. The
term annotations include 93,293 bio-medical terms that
have been annotated using the 35 terminal classes of the
GENIA term ontology (see Figure 1). The event annota-
tion was performed on top of the term annotation, relat-
ing the terms.

While terms in text are related with each other in various
ways, we have focused on dynamic relations. By
"dynamic", we mean that at least one of the biological
entities in the relationship is affected, with respect to its
properties or its location, in the reported context. Extract-
ing such information from text would be useful in build-
ing models of biological systems, e.g. pathways. In order
to focus on dynamic relations, some relationships are
excluded from our annotation, even though they are bio-
logically important. Static relationships such as Part-of,
IS-A, and Similarity relationships between terms are all
excluded. (This does not necessarily mean that expres-
sions in text which usually describe static relations were
ignored. See Section Single-facet Annotation for detail.)
Examples of these are given below:
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=) Source

- fitom  (342) = Artificial_source
= ¥ Compound P Cell_line (4,129)
. Ihorganic (258) P Other_artificial_source  (211)
= _ Qreganic = Matural_source
=0 dminoacid i Body part (461)
- Amino_scid_monomer (784) L Cell_component  (679)
: Peptide G2,y i Cell_type (7,473)
=@ Protein =00 Oreanism
----- Protein_complex (2,394) bl Moro cell (222)
----- Protein_domain_or_region (1,044) Multicell  (1,782)
----- Protein_ ETC (97) D Virus (2,136)
----- Protein_family or_group  (8,002) il Tizzue (706)
----- Protein_moleculs (21,290)
----- Protein_substructure (129)
----- Protein_subunit (942)
----- Carbobydrate  (99)
----- Lipid (2,375)
=00 Mucleic_acid
=@ DNA
- DM&_domain_or reeion  (8,237)
- DNA_ETC (48)
- DNA family or group  (1,545)
- DMA_malecule (554)
- DMA_substructure (106)
----- Mucleotide (243
----- Polmucleotide (259)
=0 RNA
- FM&_domain_or_region (39)
- RMNA&_ETC (16)
() RN&_family_or_group (332)
- RM&_molecule (664)
- RMNA&_substructure )]
----- Other_organic_compound  (4,113)

Figure |

GENIA term ontology. The hierarchy of the GENIA term ontology. Terminal classes are used for GENIA term annotation.
The figures in parenthesis indicate number of annotation instances made to the GENIA corpus.

o The structural similarity of SNI1 to Armadillo repeat protein
... [Similarity]

o Connexin has four transmembrane domains. [Part-of]
o NF kappa B, a transcription factor, is ... [IS-A]
Relationships outside the domain of molecular biology,

such as clinical ones involving diseases and symptoms,
are also excluded from the current annotation.

An example of event annotation

Figure 2A shows a screen snapshot of our annotation tool,
XConc. There are four regions within the figure, each out-
lined by a box. The top box contains a sentence under
annotation. That is,

The binding of I kappa B/MAD-3 to NF-kappa B p65 is suf-
ficient to retarget NF-kappa B p65 from the nucleus to the
cytoplasm.

Each of the remaining three boxes displays an event anno-

tation which has been added to this sentence. The original
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23 the binding of to i
sufficient to retarget from the Bnu SpE to the
Eoytoplasm-3Em

TYPE :Binding
THEME : T36
THEME : T37

pa B/MAD-3 ptodd NF-kappa B p65 is

—kappa B pid from the nucleus to the cytoplasm,
ad

EWVEMT E7
TYPE : Positi

273 the bmdlng.oﬂ kappa B/MAD-3 to NF-kappa B p63 Eis< psufficients

to<d retarget NF-kappa B pG3 from the nucleus to the cytoplasm,

A

NF-kappa B pé5 | |1 kappaB/MAD-3| | NF-kappaB p6s | [ cytoplasm |

B

<sentence id="S6">2) the binding of <term id="T36" lex="I_kappa_B/MAD-3"
sem="Protein_molecule">| kappa B/MAD-3</term> to <term id="T37" lex="NF-kappa_B_p65"
sem="Protein_molecule">NF-kappa B p65</term> is sufficient to retarget <term id="T38"
lex="NF-kappa_B_p65" sem="Protein_molecule">NF-kappa B p65</term> from the <term
id="T39" lex="nucleus" sem="Cell_component">nucleus</term> to the <term id="T40"
lex="cytoplasm" sem="Cell_component">cytoplasm</term>, </sentence>

<event id="E5">

<type class="Binding"/>

<theme idref="T36"/>

<theme idref="T37"/>

<clue>2) the <clueType>binding</clueType> <linkTheme>of</linkTheme> | kappa B/MAD-3
<linkTheme>to</linkTheme> NF-kappa B p65 is sufficient to retarget NF-kappa B p65 from the
nucleus to the cytoplasm,</clue>

</event>

<event id="E6">

<type class="Localization"/>

<theme idref="T38"/>

<clue>2) the binding of | kappa B/MAD-3 to NF-kappa B p65 is sufficient to
<clueType>retarget</clueType> NF-kappa B p65 from the nucleus <clueLoc>to the
cytoplasm</clueLoc>,</clue>

</event>

<event id="E7">

<type class="Positive_regulation"/>

<theme idref="E6"/>

<cause idref="E5"/>

<clue>2) the binding of | kappa B/MAD-3 to NF-kappa B p65 <linkCause>is</linkCause>
<clueType>sufficient</clueType> <linkTheme>to</link Theme> retarget NF-kappa B p65 from the
nucleus to the cytoplasm,</clue>

</event>

Figure 2

Example of event annotation. GENIA event annotation is made sentence by sentence. Although the actual corpus file with
annotation is encoded in XML (C), the annotators work on a CSS-styled view (A) which is much more user-friendly. Some-
times, a graphical representation (B) is used to depict annotated events and their relations in an abstract and concise way.
Note that the black, red and blue arcs link an event with its themes, causes and location respectively.
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sentence without term annotation is shown inside each of
those boxes, to allow annotators to mark-up text spans
that belong to the corresponding annotation.

Biological entities, which had been annotated earlier dur-
ing term annotation, are shown in colors on the screen.
Blue and green indicate protein molecules and cell com-
ponents, respectively. Each term is assigned a term Id
(T36~T40 in the example of Figure 2A). These terms are
expressed as n-tuples of attribute-value pairs as follows:

e (Id: T36, Class: Protein_molecule, Name: I kappa B/
MAD-3)

e (Id: T37, Class: Protein_molecule, Name: NF-kappa B
p65)

e (Id: T38, Class: Protein_molecule, Name: NF-kappa B
p65)

e (Id: T39, Class: Cell_component, Name: nucleus)
e (Id: T40, Class: Cell_component, Name: cytoplasm)

As mentioned, the three boxes under the input sentence in
Figure 2A show three event annotations. The first event E5
represents binding of the two entities, T36 (I kappa B/
MAD-3) and T37 (NF-kappa B p65). The word "binding" is
shown in red. This indicates the clue which the annotator
used as textual evidence for the existence of a binding
event. One of our annotation principles requires each
event to be supported by such a clue word. This principle
is described in the Text-bound Annotation Section. Clue
words are described in detail in the section Linguistic
clues and event classes. Additional supporting words are
shown in yellow ("of" and "to").

Each event is also assigned a unique Id. The description of
the binding event is:

e (Id: E5, Class: Binding, ClueType: binding, Theme: T36,
Theme: T37)

The two arguments are specified by their Ids so that they
are unique and bound globally over the corpus. The
Theme in an event is an attribute or slot to be filled by an
entity or entities whose properties are affected by the
event. The second event E6 represents localization of the
protein T38. The textual clues, "retarget" and "to the cyto-
plasm"”, are marked up as key expressions denoting the
event type and the location relevant to the event, respec-
tively. E6 is represented as:

e (Id: E6, Class: Localization, ClueType: retarget, Theme:
T38, ClueGoal: T40)

http://www.biomedcentral.com/1471-2105/9/10

T38 is taken as a Theme since its location is affected by the
event. The two entities T37 and T38, though they have the
identical textual expressions NF-kappa B p65, are distin-
guished by their Ids. They appear in two different spans in
text and thus in different biological contexts. They are
identified as the Themes of the two events E5 and E6,
respectively. This distinction is important for identifica-
tion of biological entities in their proper context(See Sec-
tion Event annotation and pathways).

The last event E7 is the causality relation between E5 and
E6. That is, the binding event (E5) of the two proteins
"causes" the localization event (E6) of one of the two pro-
teins. This causality relation is represented as an event of
type Positive_regulation.

(Id: E7, Class: Positive_regulation,
ClueType: is sufficient to,
Theme: E6 (Localization, Theme: T38),
Cause: E5 (Binding, Theme: T36, Theme: T37))

In the current GENIA event ontology, Regulation has a
broader definition than regulatory events in a strict bio-
logical sense, e.g., catalysis, inhibition, up-/down-regulation,
etc. It is used to encode general causality among events.
We will discuss the issues related with regulatory events in
Section General causality. Note that, although the expres-
sion is sufficient to is hardly a linguistic expression for cau-
sality, the annotator recognized it as such in this sentence.

To assist the reader in understanding these relationships,
we present Figure 2B, a graphical depiction of the example
from Figure 2A. In this representation, entities from the
GENIA term ontology are shown in rectangular boxes,
while entities from the GENIA event ontology are shown
in circles. Black, red and blue arrows indicate a link
between an event and its themes, causes and location,
respectively.

Figure 2C shows the XML representation of the three event
annotations. This format will be used for public distribu-
tion of the event-annotated corpus.

Event annotation and biological ontologies

Although text in natural language (like English) is easy for
human readers to understand, the "same" biological
events are expressed in diverse surface textual forms. A
representation scheme of events such as those in the pre-
vious section is important for reducing such surface diver-
sity. It represents the "same" events in the same formats.
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In order to establish such a scheme, we have to answer cer-
tain ontological questions, such as how to identify the
"same" events or the same types of events (event classes),
and what structures are needed to represent them. We
partly avoided these questions by adopting the Gene
Ontology (GO) [47] as our core ontology. We started with
GO to define the initial set of event classes and revised
them subsequently. The definitions in GO have frequently
been referred to by our annotators to judge whether
events in text belong to certain event classes or not.

While our information-centered approach to event anno-
tation frees the annotators from linguistics-based criteria
for annotation, annotation should not be totally free from
text being annotated. Annotation by biologists should be
curbed by information actually encoded in text. In other
words, annotation should be performed based on infor-
mation explicitly present in the source text and should not
be detached from it too far. This requirement that annota-
tion should reflect the organization of information in text
imposes constraints on our representation scheme, distin-
guishing it from other, more biology-oriented, schema. In
the following three sections, we will describe the ontology
we used for text annotation, discussing how it differs from
other bio-ontologies and the reasons why.

GENIA ontology and GO

The GENIA event annotation relies on two ontologies: the
event ontology and the term ontology. The GENIA event
ontology defines and classifies events (or occurrents in the
terminology of philosophical ontology [62]) which are of
interest in the GENIA domain. In contrast, the GENIA
term ontology defines things (or continuants [62]) which
cause or run through the events. Roughly speaking, the
event ontology provides vocabulary for predicates (e.g.
"binding", "phosphorylation”, etc.), while the term ontol-
ogy is for arguments (e.g. proteins) which are used in
event descriptions. The term ontology is given in Figure 1.
For the details of the term ontology, please refer to [32].
In this section we focus on the details of the GENIA event
ontology.

Figure 3 shows the hierarchy of the event classes in the
GENIA event ontology. The numbers attached to the
nodes are the number of instances of the events in the cur-
rent annotation of 1,000 abstracts. With the exception of
the six classes shown in dotted boxes (Gene_expression,
Artificial_process, Correlation, Regulation, Positive_regulation,
Negative_regulation), all event classes are taken from GO.
We inherit the names and definitions of the event classes
from GO, performing minimal conversion for fitting
them into the Web Ontology Language (OWL) naming
conventions. While the class of Regulation in GO with its
two sub-classes, Negative regulation and Positive regula-
tion, remain in our ontology, the definitions of these

http://www.biomedcentral.com/1471-2105/9/10

classes are different from those of GO (See Section Gen-
eral causality). Since the domain of interest in GENIA is
much narrower than that in GO, we only use a subset of
the GO classes. For example, under the top level class
Biological_process, we rtetain only three classes,
Cellular_process, Physiological_process and Viral_life_cycle.
These three classes reflect the three major topics in the
GENIA domain. In particular, Physiological_process with its
subclasses Metabolism and Localization is the main focus of
the domain. Accordingly, the GENIA event ontology
includes the finer grained GO sub-types of these event
classes.

In addition, the GENIA event ontology has the following
three event classes which GO does not have: Gene Expres-
sion, Artificial Process, and Correlation.

Gene_expression

Gene expression is missing from the Gene Ontology, so
for the GENIA term Gene_expression, we use the defini-
tion given in MeSH, e.g. the phenotypic manifestation of
a gene or genes by the processes of genetic transcription
and translation. Gene expression is not in GO because it
is not a single event, but a macro process. An event in this
class consists of micro events or processes such as tran-
scription, translation, and post-translational processes.
All of these micro events are in GO. While the decision to
exclude a composite process like Gene expression may be
justifiable in GO, we need this class for text annotation.
The versatility of natural language freely allows authors to
express information with variable granularity, and
authors often use expressions with coarse granularity to
denote complex objects or events. Such expressions are
pervasive in text: in the GENIA event-annotated corpus,
3,535 events have been annotated as Gene_expression.
Some example sentences involving Gene_expression are
given below:

e T-cell expression of the human GATA-3 gene is regulated
by a non-lineage-specific silencer (Figure 4A).

e Most retinoblastoma specimens revealed a high COX-2
expression.

e [L-10 preferentially increased expression of IFNgamma-
inducible genes.

® However, B cells can also synthesize [L-2.

® The ability of CMV IE gene products to enhance IL-6 pro-
duction may play ...

Artificial_process
Artificial_process describes experimental processes which
are performed by human researchers. Examples include
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Biological _process

=@ Cellular_process (1,568/2)
----- Cell_adhesion (214)
----- Cell_communication (287)
----- Cell_differentiation  (494)
----- Cell_recognition 4)

=0 Wiral_life_cycle

----- Binding
----- Localization

=00 Wetabalism

----- DMA_recomhbination

- Mutagenesis

----- Cellular_physiological_process (567)
=00 Physiological_process (10,411/1,250)

(2,448)
(683)
(6,030/ 114)

DMA_metabolism (464/ 32)

@ DNA_madification )

(84)
(343)
(3,633)
(671/58)
(154)

Frotein_metabolism

----- Protein_catabolism

=80 Protein_modification

----- Protein_deubiquitination

..... Protein_processing

----- Protein_ubiquitination
(44)
(26)
(1,122)
(632/388)

----- Translation
EMNA metabolism

Transcription

- Initiation_of viral_infection (244)

Figure 3

----- Protein_amino_acid_acetylation

----- Frotein_amino_acid_dephosphorylation

----- Protein_amino_acid_phosphorylation

©)

(40)

(6)

http://www.biomedcentral.com/1471-2105/9/10

415/ 28)
2

----- Protein_amino_acid_deacetylation 1)

(12)
(326)

(567)
(1,733)
(21,616/4,552)

GENIA event ontology. The hierarchy of the GENIA event ontology. For event annotation, not only terminal classes but
also classes at higher level are allowed to be used. The figures in parenthesis indicate number of annotation instances made to

the GENIA corpus.
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Regulation

Non-lineage-
specific silencer

dl_differentiaiop

genes encoding
gamma-globin

| cataz || 1ALz || wmo |

D

Figure 4

Graphical representation of events in some example sentences. Examples in text with corresponding event annota-
tion in graphical representation. (A) T-cell expression of the human GATA-3 gene is regulated by a non-lineage-specific silencer. (B)
The extent of IFN-induced NK cell killing of E | A-expressing cells was proportional to the level of EIA expression ... (C) Cell hemoglobini-
zation was accompanied by the increased expression of genes encoding gamma-globin ... (D) In addition, forced expression of GATA3
potentiated the induction of RALDH2 by TALI and LMO, and these three factors formed a complex in vivo.
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transfection and treatment. Although the use of this event
class was not encouraged, the annotators identified 597
events in 1,000 abstracts. Example sentences involving
Artificial_process are given below:

e ... to induce NF-kappa B/Rel nuclear activity in cells incu-
bated in the presence of 3,4-dichloroisocoumarin, ...

e Endogenous or exogenously administered RA may have a
significant role in HIV regulation.

® Over-expression of STAT2 by transfection of the cDNA pre-
vented apoptosis of the T cell clones.

Correlation

Correlation represents an underspecified relation between
events. It is a characteristic feature of natural language that
authors can leave irrelevant or unknown details unspeci-
fied. Consider the following sentence:

The extent of IFN-induced NK cell killing of E1A-express-
ing cells was proportional to the level of E1A expression
... (Figure 4B)

The text in this example indicates that there is a certain
relationship between the two events "IFN-induced NK cell
killing of E1A-expressing cells" and "E1A expression", but the
author avoids specifying which event is the cause and
which one is the consequence.

Such under-specification is frequently observed in text,
and there are many linguistic expressions used to leave the
relationships underspecified. While the exact relationship
is left unsaid in such expressions, the existence of a rela-
tionship between two events is still crucial information
for biologists. In these cases we encouraged annotators to
use the event type Correlation. 1,722 Correlation events
are recognized in the current annotation. Some examples
are given below:

e Cell hemoglobinization was accompanied by the increased
expression of genes encoding gamma-globin. (Figure 4C)

e Decreased adhesion molecule expression was associated
with a reduction of monocytic cell adhesion.

e ...may have a role in the increase in globin gene transcription
that characterizes erythroid maturation.

e This increase in p50 homodimers coincides with an increase
in p105 mRNA.

Event annotation and pathways
While developing the annotation framework which we
have described so far, we compared our work to current
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research in representing pathways [63,64]. A pathway is a
detailed graphical representation of a biological system,
which comprises a set of mutually related events [65]. It
integrates pieces of information on biological events scat-
tered in many scientific publications into a coherent sys-
tem, and thereby facilitates discussion among a large
group of biologists and build consensus on what actually
happens in a biological system.

The event annotation is intended to be used for develop-
ment of an ER (event recognition) program. While the
results of ER can be used for various NLP-based TM such
as intelligent text retrieval, question answering, etc., one
of the major challenges is to use them to associate text
fragments with relevant part of pathways or to use them to
construct semi-automatically pathways. Since events
extracted from individual papers have to be integrated
into organized networks of events, we need to transform
the results of ER to the forms required by pathway models
[66].

Research of formalizing pathway representation has made
a significant progress in last few years and has reached a
consensus on how information on biological events
should be represented [63,64], showing how biological
events should be represented in a way consistent with the
scientific view of a biological system. The consensus actu-
ally contrasts with our own event representation. These
contrasts highlight the difference between building a bio-
logical model, as pathways do, and building a loose bio-
logical description, as we find in natural language. From
this point of view, the two most significant properties of
pathway representations can be summarized as follows:

(1) Entity-Centered Representation Pathway representa-
tion has become entity-centered, while language organ-
izes information in a predicate-centered manner. That is,
pathways are usually organized around state-changes of
continuants. The major players in this type of representa-
tion, e.g. nodes in a graphical representation, are biologi-
cal entities which correspond to continuants in specific
biological contexts. Events organized around predicates
are relegated to mere labels which are attached to links
between nodes.

(2) General Causality As a typical pathway shows, bio-
logical events are intertwined with each other. This makes
it difficult, if not impossible, to determine causation, e.g.
which event causes which. As a result, pathway represen-
tations either eradicate "general" causality from their rep-
resentations or restrict the relation to a set of limited
relations whose underlying mechanisms are well circum-
scribed.
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We discuss each of these issues in detail in the following
sections.

Entity-centered representation

Systems Biology Mark-up Language (SBML) is a framework
which is becoming a de facto standard for pathway repre-
sentation, and which clearly commits to the entity-cen-
tered representation [63]. Figure 5 shows the SBML
representation for the same set of events as in the previous
example, in Figure 2. In this representation, the same con-
tinuant, NF kappa B p65, appears as three distinct nodes in
different biological contexts: one before binding, another
after binding, and the third after localization. These three
nodes denote instances of the same continuant in differ-
ent biological contexts. Since these three instances have
different properties, it is natural that a pathway represen-
tation captures them as different nodes. In this paper we
apply definitions introduced in [62], which distinguishes
between continuants and instances. A continuant is an
entity which endures, or continues to exist, through time
while undergoing different sorts of changes, including
changes of location. We use the term biological entity to
refer to an instance of a continuant at a specific time,
which is also bound to a specific biological context. The
SBML representation is entity-centered since it gives inde-
pendent status to each of biological entities or instances of
the same continuant.

On the other hand, natural language text does not usually
make explicit such distinctions among instances of the
same continuant with different properties or in different
contexts. Consider the example sentence (shown here
again for quick reference):

The binding of I kappa B/MAD 3 to NF-kappa B p65 is suf-
ficient to retarget NF-kappa B p65 from the nucleus to the
cytoplasm.

The two events (the binding and localization events that
occur in a sequence) and their relationship are described.
Since the sentence is organized around the main predicate

NF-kappa B p65
| kappa B/MAD-3

binding

NF-kappa B/l kappa B complex|
(in nuclear)

localization

NF-kappa B/l kappa B complex |
(in cytoplasm)

Figure 5

SBML-style event description for the example in Fig-
ure 2. The nodes denote biological entities. The links denote
transitions between different states of entities and corre-
spond to events causing the state transitions.
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"is sufficient to" without any explicit time points, there is
no natural way to introduce a new entity (NF-Kappa B/I
kappa B complex before localization) created by the bind-
ing event. The first occurrence of NF-kappa B p65 is
involved in the binding event, but the expression does not
make explicit whether it denotes the entity before or after
the event. The same is true for the localization (retarget-
ing) event; since the sentence is organized around the
predicate "retarget", the distinction of the entities before
and after the retargeting event is not made explicit.

Although such implicitness may be taken as a limitation
of natural language as a language for science, it contrib-
utes to the easiness and efficiency of communication by
language. Human perception of continuants is strong.
Even though a continuant may change its properties over
the course of an event, it is perceived as the same contin-
uant and expressed as such in language. Such a conception
of perpetual existence of continuants strongly influences
expressions in language. It may even affect our modes of
intuitive understanding and inference. Since continuants
recognized as such permeate text, to replace them with
distinct entities in different contexts requires a significant
reorganization of information in text, and thus makes text
annotation extremely difficult.

While the introduction of new entities such as NF-kappa B/
I kappa B complex in nuclear or NF-kappa B/I kappa B com-
plex in cytoplasm may improve the explicitness of pathway
representations, in event annotation it is likely to intro-
duce different interpretations by individual biologists.
Interpretations which are not properly bound to expres-
sions in text are one of the major causes of inter-annotator
discrepancy. As we saw in Section An example of event
annotation, we have two textual spans with the same
expression NF-kappa B/p65, but with different Ids. The
existence of these two distinguished entities is supported
by evidence in text, and will facilitate the transformation
from a textual description of the event to a more biology-
oriented representation. However, no distinctions which
lack explicit textual evidence should be made in the anno-
tation.

General causality

Representation of General causality is highly related with
the treatment of another controversial concept, "Agency."
Agency, like causality, is basically an epistemological con-
cept which presupposes that a participant with intention
is involved in the event. Among the two major roles,
Agent (deep subject) and Theme (deep object), which lin-
guists normally use in the semantic representation of an
event, involvement of the Agent in an event is much more
tenuous than that of the Theme. In particular, verbs such
as "raise," "activate", and "inhibit" which, by themselves,
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do not specify what actions are taken by their agents, pose
special difficulties in semantic analysis.

The sentence "Mary hurt John," for example, can be inter-
preted as "Mary did something" which resulted in "John
being hurt [67]." The sentence explicitly states the getting
hurt event, and the involvement of John (Theme) is obvi-
ous since John is affected by the event. On the other hand,
the actual event in which Mary (Agent) is involved is
unstated, and the connection between Mary (Agent) and
the getting hurt event is only causality: whatever Mary did,
it caused John to get hurt. In this analysis, verbs like "hurt"
are taken to express a causal relationship between unspec-
ified actions, taken by the Agent, and the event which
explicitly involves the Theme.

This analysis provides us with a principled way of treating
verbs such as "activate," "promote," "inhibit," and
"induce." In the domain we are dealing with, there are no
Agents with intention except for Artificial_Process. We
therefore treat these verbs simply as expressions of causal-
ity. Consider the following three sentences:

o Expression of LMP1 in host cells activates NF-kappa B.
® LMP1 needs only 11 amino acids to activate NF-kappa B.

o All six B-cell lines tested showed NF-kappa B activation in
response to LMP1 expression.

These three sentences show the variety of ways in which
an event and its causes can be linked in text. The last sen-
tence expresses the causal relationship between the two
events (Activation of NF-kappa B and Expression of LMP1)
by linking them with "in response to", while the other two
sentences use the verb "activate" to express the causal rela-
tion. In addition, the first sentence expresses the cause as
an event ("LMP1 expression"), while the second sentence
expresses it as an entity ("LMP1"). These two expressions
differ on the surface, but they are related in meaning. In
our representation, activation of a protein is classified as a
Positive_regulation event, following the definition in GO.
Such regulation events can have causes, which are other
events. Hence, in the first sentence, the event Expression of
LMP1 can be represented as a cause of the event Activation
(See Figure 6B). In the second sentence, the protein
"LMP1" is directly linked as a cause of Activation (See Fig-
ure 6A). Equivalence between the two expressions can be
recognized by applying a rule of entailment: "If a protein
positively regulates an event, physical manifestation of
the protein will cause the event."

In contrast to these textual expressions of causality, biol-
ogy-oriented representations like SBML pathways do not
represent causality among events explicitly. Instead, a
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+Regulation

[ tmpr | [ NFkappaB | NF-kappaB
A B
Figure 6

Graph representations of events about "LMPI to
activate NF-kappa B". (A) expresses the event "LMPI
activates NF-kappa B", and (B) expresses the event "expres-
sion of LMPI activates NF-kappa B". Biological implication of
the two expressions is equivalent, i.e. since LMP| activates
NF-kappa B, physical manifestation of LMPI, of course, acti-
vates NF-kappa B.

sequence of state changes of biological entities is repre-
sented in a network. A set of biological entities in the
upstream of a network is linked with other biological enti-
ties in the downstream, whose states change. Causality is
represented implicitly by linked paths between entities in
upstreams and downstreams. In such a representation,
LPM1 would be located on the upstream, with active NF
kappa B in the downstream.

However the pathway representation makes other rela-
tionships even more explicit than they usually are in text.
For example, the second sentence given above suggests
that LPM1 has a binding site of 11 amino acids for an
unspecified adaptor protein. No concrete adaptor pro-
teins were mentioned in the abstract where this sentence
appears. However, a review paper [68] constructed a par-
tial pathway (Figure 7) in which the adaptor protein was
identified as TRADD. This information came from other
publications, and the author of the review paper inte-
grated such pieces of information scattered in the litera-
ture, in order to create a pathway. Furthermore, the
resulting pathway indicates that a long sequence of bio-
logical entities and their state changes intervene between
LPM1 and activated NF kappa B. The linked path involves
the adaptor protein TRADD, NIK, IKK, and others, and
finally reaches activated NF kappa B. This is in contrast to
the three sentences shown above, which gloss over the
linked path by simply expressing that "expression of
LPM1" causes "activation of NF-kappa B."

As these examples show, causality expressions are conven-
ient since they allow authors to describe relations among
events without explaining the details of underlying mech-
anisms. Authors may want to leave such explanations out
of a publication when they are not relevant or, in some
cases, since the authors may not know these underlying
mechanisms. For all of these reasons, expressions for cau-
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Plasma
membrane

Figure 7

—p NIK —p [KKs —p [kBa —9 NFkR

4

SEK —9 INK —p AP-]

Molecular interactions and signaling pathways engaged by LMP1. LMPI is involved in the activation of NFkB. Even
though it has to get through a complex path for the role of LMPI to take effect on the activation of NFkB, in natural language
text, the involvement of LMPI for the activation of NFkB is often simply written as "LMP| activates NFkB." Reprinted from

[68], Copyright 2001, with permission from Elsevier.

sation are pervasive in text. Several more examples are
given below:

o Expression of LMP1 activates transcription from p50/p65-
and c-Rel-responsive promoters.

o Expression of LMP1 in EBV-negative nasopharyngeal epithe-
lial cells induced COX-2 expression.

o [nhibition of NF-kappa B in T-lineage cells leads to a dra-
matic decrease in cell proliferation.

o QOverexpression of TRAMP leads to two major responses,
NF-kappaB activation and apoptosis.

o Apoptosis can occur after Bcl-2 phosphorylation.

In response to the omnipresence of causal expressions in
natural language, we have chosen to make causality
explicit in our event representation. In addition to expres-
sions like "is sufficient to" and "in response to", verbs
such as "induce," "promote," "activate," and "lead to" are
treated as expressions of causal relationships between
events. Note also that temporal expressions such as "after"
are interpreted in some contexts as Causal in our represen-
tation.

Biological annotation and quality control

Before the actual event annotation, we performed a pre-
liminary annotation with a loosely defined annotation
scheme. We first gave annotators a set of GO classes with

their definitions, and asked each of them to annotate the
same set of abstracts. As mentioned previously, we did not
restrict these annotations to staying within the boundaries
of linguistic structures such as constituent or predicate-
argument structure. For example, biologists identified
events in expressions such as the inhibitory effect of CaM-K
IT on IL-2 promoter (See Section Linguistic clues and event
classes). They often saw causal relations among events in
temporal sequences such as apoptosis can occur after Bcl-2
phosphorylation. They tend to ignore or abstract away from
certain linguistic structures. They simply decompose "A
activates B as well as C" into two events, "A activates B"
and "A activates C". Some adjectives are treated as causes,
as in mitogenic activation and thermal activation, while cer-
tain adverbs such as transcriptionally in A upregulates tran-
scriptionally B are taken to signal events. Our annotators
identified two events, upregulation and transcription, in
this sentence.

Interesting though they were, the preliminary results of
annotation also showed the difficulty of the biological
annotation. That is, since it relied on interpretation by
individual biologists without specific annotation guides,
inter-annotator discrepancies were much larger than we
had expected. As a result we developed several techniques
for a more sophisticated annotation methodology, which
improved inter-annotator agreement.

First, biological annotation inevitably involves interpreta-
tion based on background knowledge and information
from context. However, these are the two main factors
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which lead to discrepancies. We had to introduce a princi-
ple of annotation to curb the effects of these factors (Text-
bound Annotation). Second, we had to give very clear
guidance on the scope of annotation. This principle
guides what types of information should be annotated
and what types should not (Single-facet Annotation).
Finally, we needed careful verification of annotation
results. In particular, we found Cross Validation between
event and term classes very effective for finding anomalies
and cleaning up annotations (Semantic Typing and
Cross Validation).

The environment for annotation work also played a cru-
cial role in quality control. To share experiences, in partic-
ular, reviewing previously annotated text from different
annotators became essential for maintaining homogene-
ity of annotation. The coordinator of annotation organ-
ized weekly meetings with the annotators and involved
them closely in the adjudication process. We also devel-
oped a tool (XConc) for multi-layered annotation. The
environment of annotation will be described in the Meth-
ods Section. Text-bound Annotation, Single-facet Annota-
tion, and Semantic Typing are discussed in the following
sections.

Text-bound Annotation

The first key principle which we established for reducing
annotator discrepancies is called Text-bound Annotation.
It can be described simply as follows:

Associate all annotations with actual expressions in text.

A similar principle was used in the annotation of Bioinfer
[56]. As in Biolnfer, we do not allow annotators to anno-
tate an event unless an expression mentioning the event
type appears in the text. However in our attempt we delib-
erately dissociate annotation from linguistic structures,
and events in our annotation are not necessarily organ-
ized around verbs. That is, an event does not necessarily
correspond to a constituent such as a clause or phrase,
governed by a verb. Expressions which indicate occur-
rences of an event and expressions which describe its par-
ticipants (arguments) can be scattered throughout a
sentence without constituting a single constituent in the
linguistic structure. Nonetheless, such expressions must
be provided for each annotation, and we refer to them as
"clue words" or "clue expressions". This principle ensures
that each annotation is grounded in textual evidence, and
that annotations are not the result of unbounded interpre-
tation by individual annotators. It applies even when the
annotator could infer the existence of an event from con-
text (See Section Linguistic clues and event classes).

We also aligned our annotations to single sentences. That
is, all evidence attached to an event should come from the
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same sentence. There are some cases in which slots for
arguments are filled by anaphoric expressions such as pro-
nouns, definite noun phrases and noun phrases with
demonstrative determiners (such as this or these). Only in
such cases were annotators allowed to expand the scope of
annotation, identifying textual expressions outside the
current sentence to fill the argument slots. Even in these
cases, expansion of scope is explicitly indicated by a spe-
cial link (Co-Ref link), which associates the anaphoric
expression inside the sentence with the entity outside.

The goal of these restrictions is to prohibit annotators
from introducing entities or events which lack textual
clues in the same sentences. This does not imply that
annotation was performed sentence by sentence, without
considering context. On the contrary, the annotators were
encouraged to use the document context for disambigua-
tion. Consider the following examples:

e [n addition, forced expression of GATA3 potentiated the
induction of RALDH?2 by TAL1 and LMO, and these three fac-
tors formed a complex in vivo (Figure 4D).

e Furthermore, a TAL1 mutant not binding to DNA also acti-
vated the transcription of RALDH?2 in the presence of LMO
and GATA3.

e [n contrast, in vivo footprints on GT (CACCC) motifs dif-
fered between the cells expressing the fetal or the adult globin

program.

In the first of these sentences, an annotator has to disam-
biguate the anaphoric expression these three factors. With-
out context, it can refer to either of the two sets of entities,
(TAL1, LMO, RALDH2) or (TAL1, LMO, GATA3). How-
ever the second sentence provides enough context for the
annotator to identify the third element in the set as
GATA3, not RALDH?2. It is important to note that this type
of interpretation still adheres to our principle of Text-
bound Annotation, because it relies on textual evidence in
the same sentence: namely, the anaphoric expression.

On the other hand, although footprints in the third sen-
tence indicates a DNA-binding event, implying the pres-
ence of a protein which is bound, there are no textual
clues in the sentence to indicate the existence of such a
protein. In such cases, annotators were not permitted to
represent this protein (the hypothesized Theme of bind-
ing) in annotation, even if they could identify the missing
element from context. As a result, we see quite a few events
in our annotation which lack necessary arguments (See
Results and discussion Section). To fill them from con-
text remains a topic for future work, since this would
require carefully calibrated guidelines to ensure inter-
annotator agreement.
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Single-facet Annotation

Our second key principle for reducing annotator discrep-
ancies is called Single-facet Annotation. It is described as
follows:

Keep the view point for annotation as simple and focused as
possible.

Consider the following sentence:

Calcineurin acts in synergy with PMA to inactivate I kappa
B/MAD3, an inhibitor of NF-kappa B.

One annotator identified a single event in this sentence,
which was Inactivation of I kappa BIMAD3 by Cacineurin.
However, another annotator claimed that the sentence
conveys additional biologically important information:
that calcineurin actually enables NF-kappa B to be acti-
vated by inactivating I kappa B/MAD, which inhibits NF-
kappa B. For her, the expression "I kappa B/MAD3, an
inhibitor of NF-kappa B" indicated another event: Inhibi-
tion of NF-kappa B by I kappa B/MAD3. This is a typical dis-
crepancy caused by the multi-faceted nature of
information in text.

When we see the sentence from the view point of events
and their relationships, we interpret the sentence in the
same way as the second annotator. That is, we consider
every expression in the sentence as possible evidence of an
event, even in cases where there is no explicit verb, as in "I
kappa B/MAD3, an inhibitor of NF-kappa B".
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On the other hand, the first annotator read the sentence
from a rather general, non-focused view. She used a
generic interpretation of the linguistic device of apposi-
tion, so she interpreted the same expression as a static IS-
Arelation, i.e. I kappa B/MAD?3 1S-A inhibitor of NF-kappa B.

The goal of Single-facet Annotation is to reduce such dis-
crepancies by defining one aspect of text as the focus of
annotation. In our annotation, we asked annotators to
examine text from the focused view point of events and
their relationships. We gave each annotator a list of event
classes from GO (the 35 event classes we chose) and asked
them to identify as many events and their relations as pos-
sible in every sentence, within the limit imposed by Text-
bound Annotation. We call this Event-centered Annota-
tion as an instance of Single-facet Annotation.

Event-centered Annotation not only reduced annotator
discrepancy but also contributed to the identification of a
diverse vocabulary of event-related expressions. This is a
secondary feature of Single-facet Annotation. As the anno-
tation example above shows, focusing our interpretation
on one facet of text, like the expression of events and their
relationships, allows us to ignore the constraints that are
usually imposed by other facets, like linguistic constituent
structure. When we instruct annotators to examine every
part of a sentence with respect to its role in an event, they
are able to ascribe event-related meanings to parts of the
sentence that cross constituent boundaries and that do
not conform to predictable predicate-argument structures.
Table 1 shows examples which were identified as Inhibi-
tion events by the annotators. These examples demon-

Table I: Linguistic realization of the word "inhibit" in various context

Sentences/Clauses

* Our results indicate that ESI inhibits NF-kappaB activation.
* We investigated the capacity of EC to inhibit NF-kappaB activation.
* Baicalin was shown to inhibit the NF-kappaB cascade

* Montelukast prevents the decrease of interleukin-10 and inhibits NF-kappaB activation.

Nominalization

* Inhibition of ERK[/2 abrogated genistein-mediated NfkappaB activation

» Combined pharmacologic PARP inhibition and irradiation with |15 Gy significantly reduced neointimal hyperplasia

Derived nouns and Pre-nominal modifiers

* Calcineurin acts in synergy with PMA to inactivate | kappa BIMAD3, an inhibitor of NF-kappa B.

* In this report we have examined the efficacy of the gold compound AuTG as an inhibitor of HIV replication.

* The inhibitory effect of CaM-K Il on IL-2 promoter was associated with decreased transcription of its AP-1 and NF-AT transactivating pathways.
* Western blotting analysis indicated that E3330 inhibited degradation of | kappa B-alpha, which is an inhibitory protein of NF-kappa B.

Complex expressions, Constructions with weak verbs

* These findings establish that Rel can function as an inhibitor of gene expression and is required by T lymphocytes for production of IL-3 and GM-CSF.
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strate the wide variety of expressions that can be
interpreted as events under the principle of Single-facet,
Event-centered Annotation.

Hence, these principles work together to bound the inter-
pretations given by annotators. Single-facet Annotation,
in particular Event-centered Annotation, forces annota-
tors to identify events, rather than static semantic relation-
ships (IS-A, for example), or syntactic features. According
to this principle, they should annotate as many events as
possible. The principle of Text-bound Annotation gives
this process a well-defined stopping criterion: "As many as
possible" means precisely the number of events that can
be linked with textual evidence, or clue words, from the
same sentence.

Semantic Typing and Cross Validation

The GENIA event classes correspond to biologically
homogeneous classes. This property is manifested in the
homogeneity across entities (GENIA terms) which appear
as arguments for the events in a given class. Although the
relationship between GENIA term and event classes is not
so straightforward (See Section Distribution of semantic
types), semantic homogeneity of these arguments has
been useful for Cross Validation of term and event anno-
tations.

When only a relatively small number of instances of event
annotations contain entities from specific term classes,
either the term annotation or the event annotation may
be wrong.

For example, after an initial phase of annotation, for the
event class Gene_expression, we found the following pat-
terns suspicious, since their rates of occurrence are very
small:

® Gene_expression of Peptide (5 instances)
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® Gene_expression of Nucleotide (2 instances)
® Gene_expression of Lipid (1 instances)

After verification, 4 annotation instances of the first case
(Peptide) were accepted as correct annotations. The others
were errors in which the wrong terms Ids had been given
for the arguments. We added a new functionality to the
annotation tool, XConc, to prevent the same errors from
occurring again.

We also found many Binding events where two instances
of DNA were annotated as Themes. However, the annota-
tion coordinator was suspicious, thinking that DNA-DNA
binding should be rare in our domain (transcription fac-
tors in human blood cells). When those instances were
checked at an adjudication meeting, it turned out that
there had been quite a few errors in term annotation. At
the same time, they found that a few instances of DNA
Metabolism had been wrongly annotated as Binding. An
example is given below:

o In the T cell line CTLL2, ligation of kit/IL-4R alpha induces
cellular proliferation.

Ligation can be considered a type of binding. However, in
GO, it is classified under DNA Metabolism. One annota-
tor was not aware of this. Through our process of Seman-
tic Typing and Cross Validation, we were able to find and
correct the resulting inconsistencies. In Table 2 (of which
a detailed description is given in Section Distribution of
semantic types), 31 instances of DNA-DNA Binding still
remain, but all of them are instances of Binding by a DNA-
probe, which can appear in the domain of the GENIA cor-
pus.

Table 2: Distribution of theme classes for Transcription, Translation, Gene_expression and Binding events

Transcription Translation Gene_expression

Binding

DNA (538) Protein (34) Protein (2,569)
RNA (334) DNA (7) DNA (904)
Protein (291) Virus (1) Virus (47)

irus
Vi 38 RNA (30
*No theme (16) Peptide (4)

Protein DNA (1,186)

Protein Protein (611)

Protein (288)

DNA (77)

Other_organic_compound Protein (58)
Protein Lipid (48)

DNA DNA (31)

Polynucleotide Protein (22)

Protein Protein Protein (10)

DNA Protein Protein (8)

The lists for the event classes, Transcription, Translation and Gene_expression are complete. For the event class Binding, the 10 most frequent theme
patterns are shown. Note that Binding events are allowed to be annotated with more than one themes.
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Annotation results

As a result of completing this stage of event annotation,
we were able to examine some important distributions in
detail. First, the distribution of Linguistic clue words with
regard to event classes. Second, the distribution of Seman-
tic Event classes themselves. We describe each of these in
the following sections.

Linguistic clues and event classes

Clue words are important in our framework not only
because they help enforce the principle of Text-bound
Annotation but also because they can be used in the next

Table 3: Clue expressions for some event classes

http://www.biomedcentral.com/1471-2105/9/10

stage of our work, i.e. development of ER (Event Recogni-
tion) programs. They can be used as features for Machine
Learners or as key words in rules for ER. However, the dis-
tribution of clue expressions indicates the kinds of diffi-
culties which an ER program will have to resolve. In a
similar way as NER (Named Entity Recognition), ER has
to deal with difficulties caused by the ambiguity and
diversity of language.

Table 3 shows three representative event classes with the
distribution of their linguistic clues. The distribution sug-
gests that diverse words with different POS and syntactic

Regulation

Binding

Localization

regulation [of] (178)
involved [in] (139)
effects [of] [on] (137)
role [of] [in] (124)
dependent (106)
regulated [by] (102)
regulate (101)

effect [of] [on] (98)
affect (94)

regulating (75)

effect [on] (72)
regulated (66)
regulation [of] [by] (64)
regulates (61)

control (50)

affected [by] (50)
controlled [by] (47)
control [of] (45)
regulation (40)

plays * role [in] (35)
affected (34)
transcriptional regulation [of] (33)
response [to] (33)
effects [on] (33)
dependent [on] (32)
play * role [in] (31)
involvement [of] [in] (31)
modulating (30)
responsible [for] (28)
effect (28)

changes [in] (27)
controls (25)

role [for] [in] (24)

are key regulators [of] (24)
modulate (23)
independent (22)

role [of] (21)
regulators [of] (21)
controlling (21)
affecting (21)

binding (256)

binding [to] (123)
binding [of] [to] (120)
binding [of] (114)

bind [to] (106)

bind (84)

binds [to] (83)

bound [to] (68)

binding activity (67)
interact [with] (57)
binds (48)

bound (44)

interacts [with] (42)
associated [with] (37)
interaction [of] [with] (34)
cross-linking (34)
interaction [with] (29)
interaction (22)

binding activity [of] (22)
ligation (21)

binding [for] (20)
interactions (19)
recognized [by] (17)
engagement (16)
cross-linking [of] (15)
association [with] (15)
bound [by] (14)
recognizes (12)
interacted [with] (11)
interactions [with] (10)
binding [by] (10)
association [of] [with] (10)
associates [with] (10)
complexed [with] (9)
ligation [of] (8)
engagement [of] (8)
binding activities [of] (8)
associate [with] (8)
linked [to] (7)
interaction [between] (7)

translocation [of] (88)
translocation (58)
secretion (57)
release (49)
secretion [of] (33)
secreted (23)
release [of] (23)
mobilization (16)
localization [of] (16)
present (13)

uptake (12)

import [of] (12)
released (11)
localization (10)
appearance [of] (9)
secreting (8)
mobilization [of] (8)
localized (8)

uptake [of] (7)
translocated (7)
translocate (5)
mobilized (5)

import (5)
distributed (5)
co-localization [with] (5)
translocates [as a result of] (4)
translocates (4)
secrete (4)
migrating (4)
accumulation [of] (4)
shuttling [of] (3)
sequestered [via] (3)
presence (3)
imported (3)
expression [of] (3)
delivery [of] (3)
topography (2)
stored (2)
sequestered [by] (2)
sequester (2)

The 40 most frequently observed clue expressions for each of three event classes, Regulation, Binding and Localization. The asterisk sign (*) indicates
discontinuity at that position. Words in square brackets are functional words which appear together with clue expressions to form linguistic
patterns to connect the clue expressions to their themes and causes.
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structures are used to describe the same events. While
some clue expressions such as "transcription" or "tran-
scribe," "translocation," "secretion," and "cross-linking"
unambiguously denote single event classes, other clues
such as "engage," "recognize," and "associate" are general
and ambiguous.

The following two sentences show how the verb "associ-
ate" can refer to two different event classes.

e In coimmunoprecipitation experiments using transfected
COS cells, GATA-1 and ER associate in a ligand-dependent
manner. [Binding]

® The induction of these genes is associated with interleukin-
2 (IL-2)-induced T-cell proliferation. [ Correlation]

In addition, while the event class of Binding has many
specific clue expressions such as "bind", "interact", and
"ligation", general expressions which are used for other
event classes also appear. Examples are given below:

e CTLA-4 engagement by mAbs inhibits IL-2 production and
proliferation upon T cell activation.

e The GM-kappa B sequence is recognized by NF-kappa B,
which is mainly induced by PMA.

These ambiguous verbs with broad meanings would cause
difficulties for event extraction programs. Even seemingly
non-problematic verbs, such as "activate" or "bind," are
ambiguous from the biological view point. In the current
event-annotated corpus, there are 1,785 occurrences of
"activate" which are annotated as Positive_regulation, while
496 occurrences are annotated as Physiological_process.
However, uses of the word "activate" labeled with
Physiological_process convey the same meaning as uses
which are labeled Positive_regulation, i.e. either the
number of the entity in the Theme increases or the func-
tion of the Theme is materialized. The ambiguity is purely
due to the organization of the class hierarchy of GO.
Events denoted by "bind" require a similar distinction.
The term is sometimes used to refer to Cell_adhesion,
which is a separate class from Binding in GO. However a
larger proportion of occurrences of "bind" are still anno-
tated as Binding events.

e Induction of cytokine expression in leukocytes by binding of
thrombin-stimulated platelets. [Binding]

e Combinations of hypoxia and LPS significantly increased
lymphocyte binding. [Cell_adhesion]

These ambiguities are not ambiguities of the meaning of
the words themselves. They share the same linguistic core

http://www.biomedcentral.com/1471-2105/9/10

meanings. Instead, their ambiguities come from the bio-
logical heterogeneity of the events that these expressions
denote. In these cases, annotators have to check the
semantic classes of Theme in the term ontology for the
correct classification of these events. The annotation
guidelines list such confusing cases explicitly.

The class of regulatory events has the most diverse clue
expressions. This is partly because, unlike other event
classes, this class denotes relationships among events or
processes. As noted before, the class Regulation which we
use for event annotation covers a much wider range of
relations than its counterpart in GO. We use it to denote
general causal relationships among events. This may also
contribute the diversity of clue expressions. In GO, regula-
tory events are sub-classified further. One may argue that
subclassification of regulatory events leads to more uni-
form clue expressions for subclasses. This remains to be
examined, but since most of the clue expressions for this
class are general terms such as "regulate," "dependent,” or
"affect," we doubt that this is the case.

Distribution of semantic types

Table 2 shows the distribution of term classes which
appear as Themes of four events: Transcription, Translation,
Gene_expression and Binding. Reflecting the nature of the
event classes, the first three events, Transcription, Transla-
tion, and Gene expression, appear with a small, concen-
trated list of term classes as their Themes. This is in
contrast to the long list of term classes that appear as the
Theme of Binding. The first three classes are all related to
gene expression, which consists of two micro events of
Transcription and Translation.

As we expect, gene-related entities like DNA, RNA, and
proteins are identified as possible Themes of the first three
classes. The same is true of viruses, which often have genes
expressed inside human bodies. In addition, we see a
small number of occurrences of peptides which are gene
products (e.g. insulin, GH). However, closer examination
reveals interesting and rather convoluted phenomena.
From the biological point of view, Transcription is the first
step of Gene_expression, transcribing DNA to RNA. From a
naive predicate-centered view, this means that DNA
appears as the Theme of the event, and RNA appears as the
Location. Accordingly, as Table 2 shows, the majority
(538) of Themes in our annotated Transcription events are
instances of DNA. The following is an example of such a
sentence:

The Ca(2+)-dependent factor NF-ATP plays a key role in
the inducible transcription of both these lymphokine genes.

On the other hand, a transcription event can also be

described from the view point of what is produced as a
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result. In this case, the Theme is RNA, i.e. what is
expressed by Transcription. The following is an example:

These B cells expressed p40 and p35 mRNA, and phorbol
myristate acetate (PMA) stimulation strongly enhanced
p40 and p70 production.

The frequency of this type of expression, in which RNA
was annotated as the Theme, is also high (334). Since lin-
guistic expressions do not distinguish entities before or
after an event, an entity can be described as a Theme in
either of its states, before or after the event.

More interestingly, we observed quite a large number
(291) of occurrences of Protein as the Theme of Transcrip-
tion. The following is one of the typical contexts in which
this occurs:

YM268 facilitated the insulin-stimulated triglyceride accu-
mulation in 3T3-L1 adipocytes and increased the mRNA
expression of fatty acid-binding protein.

Although "fatty acid-binding protein" has been annotated
as a Protein, what is actually transcribed is the genomic
information for the protein. In a specific context (i.e. tran-
scription, translation or gene expression), the physical
form (or the container) of the genomic information of the
protein is obvious. Thus sometimes, the Theme is rather
less strictly described in text.

This phenomenon is related with our perception of con-
tinuants (like proteins) and with systematic metonymy
[69,70], which permeates language. For an example of sys-
tematic metonymy, consider the following sentence given
in everyday language:

The picture was developed, printed and sent to him.

Precisely speaking, what was developed is actually the
film containing the picture, what was printed is the con-
tent of the picture (an image), and what was sent was the
printed picture (physical manifestation of the image). The
same expression "picture" is used in different contexts of
development, printing, and delivery. Depending on the
context, the proper interpretation is taken by the reader.

Similar phenomena are frequently observed in our
domain. In the following example, the three terms
"JunB", "FosB" and "c-Fos" are used to refer to genes in the
context of transcription, and then used to refer to the cor-
responding proteins in the context of DNA binding.

... Which correlates with an absence of JunB, FosB, and c-
Fos transcription, as well as an absence of their DNA-bind-
ing activity.

http://www.biomedcentral.com/1471-2105/9/10

In the current release of the GENIA event corpus, the term
and event annotations will be kept as they are. However,
these phenomena will have to be carefully studied to
design a new annotation scheme. The scheme should be
able to accommodate both the context-dependent nature
of term semantic classes, and the context-independent
nature of the classes of continuants.

Some Transcription events are annotated without any
Theme. This is because transcription is often mentioned
as a function of a protein as follows:

Transcriptional activity of p105 is also increased in infected
cells and is also mediated by NF-kappa B through a specific
kappa B motif.

Because our Single-facet Annotation principle focuses on
events and their relations, the function of a protein is
interpreted as a potential event regulated by the protein.
Hence, the expression "Transcriptional activity of p105"
in the above sentence is paraphrased as "transcription
event regulated by p105". However, since the original sen-
tence is different (e.g. the function of the protein), the
Theme of the event (what is transcribed) is out of scope
and not mentioned. The same phenomena are observed
in Regulation, Positive_regulation and Negative_regulation
events in Table 4.

The fact that a large number of events without any Theme
(16 in Transcription, 192 in Regulation, 277 in
Positive_regulation, 76 in Negative_regulation) were
annotated indicates that our Single-facet Annotation
worked as we hoped. That is, taking an Event-centered
view of each sentence caused the annotators to identify
every event mentioned in the text, including the main
event indicated explicitly by the author as well as events
which are described peripherally, with little additional
detail.

Missing Themes in Binding events described in the
Semantic Typing Section are same in nature. The annota-
tors identified DNA binding in sentences such as

A footprint was visible over this region of he c-myb5'
flanking sequence in activated T-cell but not in unactivated
T-cell

One can safely assume the existence of another Theme of
binding, which is the protein that left the footprint, but
there was no mention of this protein in the text.

Table 4 and 5 show the type distribution of Themes and
Causes of regulatory events, respectively, while Table 6
shows a breakdown of the Positive. and
Negative_regulation which appear as Causes of regulatory
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Table 4: Distribution of theme classes for Regulation events
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Regulation

Positive_regulation

Negative_regulation

Positive_regulation (702)
Gene_expression (586)
Protein (453)

DNA (426)

Transcription (239)
Regulation (237)

*No theme (192)

Binding (133)
Physiological_process (120)
Negative_regulation (108)
Cell_differentiation (106)
Cellular_phy_process (95)
Viral_life_cycle (65)

Cell (61)

Localization (60)
Cell_communication (36)
RNA (31)
Protein_phosphorylation (26)
Cell_adhesion (18)

Virus (17)

Protein (2,413)
Gene_expression (1,560)
Positive_regulation (1,499)
DNA (902)

Transcription (632)
Binding (446)
Negative_regulation (356)
Cellular_phy_process (345)
Localization (341)
Regulation (309)

*No theme (277)

RNA (268)
Cell_differentiation (220)
Protein_phosphorylation (214)
Physiological_process (154)
Viral_life_cycle (141)
Cell_adhesion (86)
Protein_catabolism (84)
Biological_process (74)
Cell_communication (71)

Positive_regulation (1,505)
Protein (595)
Gene_expression (465)
Binding (269)

DNA (187)

Transcription (164)
Regulation (126)
Localization (126)
Cellular_phy_process (122)
Negative_regulation (121)
Viral_life_cycle (94)

*No theme (76)
Physiological_process (57)
Cell_differentiation (50)
Cell (50)

RNA (48)

Cell_adhesion (43)
Cell_communication (40)
Protein_catabolism (34)
Protein_phosphorylation (29)

The 20 most frequent theme classes are shown for each of the Regulation, Positive_regulation and Negative_regulation event type. Note that events of
Regulation type are allowed to be annotated with another event as their theme.

events. The type distribution of Themes systematically
corresponds to the subclassification of Regulation in GO.
This means that, if we recognized basic event types, we
could further subclassify them by rather simple rules refer-
ring to the types of their arguments. The only exceptions
are the cases in which terms, instead of events, occupy the
Theme. In these cases, ambiguity remains as to whether
Positive regulation means increasing their amounts or
enabling their functions.

Table 5: Distribution of cause classes for Regulation events

Causes of Regulation

Protein (5,797)

*No cause (4,184)

Other_organic_compound (2,398)

Positive_regulation (1,291) (See Table 6 for breakdown.)
DNA (1,045)

Lipid (713)

Negative_regulation (630) (See Table 6 for breakdown.)
Physiological_process (601)

Binding (577)

Artificial_process (448)

Mutagenesis (348)

Gene expression (322)

The 12 most frequent cause classes for Regulation (without
differentiating Positive_ or Negative_regulation events).

The type distribution of Causes also shows some interest-
ing tendencies. A large portion of the Causes are proteins
(5,797). While these are topics beyond the scope of this
paper, we are now formulating entailment rules by which
we can transform all complex cases, such
Positive_regulation of Protein (405) and Gene_expression of
Protein (218), into Protein, or vice versa. We expect that a
set of such entailment rules will make our representation
framework capable of handling variable granularity and
underspecification of information, which are essential
properties of natural language.

Conclusion

In the bio-medical domain, event or relation annotation
has not been conducted on a large scale, though it is rec-
ognized an important step towards advanced NLP-based
TM. There are several known difficulties for successful
completion of event annotation. We have to first define
an annotation scheme, and then perform a large amount
of annotations consistently.

In this paper, we first discussed some of basic characteris-
tics of information encoded in text such as underspecifica-
tion, variable granularity of information, and predicate-
centered description, which are reflected in our design of
annotation scheme. Then we presented our strategies for
maintaining the quality of annotation, including the prin-
ciples of Text-bound Annotation and Single-facet Annota-
tion, as well as Cross Validation by Semantic Typing.
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Table 6: Breakdown of causes in Positive_ and Negative_regulation
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Positive regulation (1,291)

Negative regulation (630)

Protein (405)

Gene_expression (218)

DNA (46)
Protein_amino_acid_phosphorylation (25)
Localization (23)

RNA (18)

Protein (200)

Positive_regulation (69)
Gene_expression (27)

DNA (24)

Localization (19)
Protein_amino_acid_phosphorylation

The Positive_regulation and Negative_regulation events which appear as causes in Table 5 are further classified in a more detail according to their

themes.

There remain discrepancies in annotation, in particular, in
the annotations of semantic roles other than Cause and
Theme. We also need to establish a more theoretically
sound framework to treat the relationship between term
and event classes in annotation.

In spite of these remaining problems, as the first phase,
the current version of event annotation is complete in its
own right. The quality and the size of the annotated cor-
pus make it one of the best and largest, compared to sim-
ilar attempts. In combination with the existing
annotations on the GENIA corpus, the annotation dis-
cussed in this paper will contribute to further progress in
NLP-based TM activities, such as event extraction, intelli-
gent information retrieval, semantic enrichment of text,
and integration of text information with pathway data-
bases. The event-annotated corpus and the annotation
guidelines will be made publicly available in XML at the
homepage of GENIA Project [71].

Methods

Annotation procedure

We started our annotation work in May, 2005 with one
coordinator (a biologist working full-time on this project)
and three graduate students in molecular biology. The ini-
tial phase of three months was for exploratory annotation,
in which three annotators were given the same set of
abstracts to annotate and a rather simple annotation man-
ual. The manual was provided by the Caderige project
[59].

Inspection of the first annotation results revealed greater
discrepancies than we had expected. This is partly because
the manual provided by the French group was intended
for annotation of text on "Bacillus subtilis and transcrip-
tion", and there were many phenomena that were not
covered. More seriously, biologists made overly-subjective
interpretations using their own background knowledge
and by referring to context.

Based on these results, we revised the manual substan-
tially and started the annotation work in earnest in

December, 2005. We also found that sharing experience
and discussing specific annotation examples among the
annotators is crucial for maintaining quality. Therefore,
we decided to organize frequent meetings between the
coordinator and the annotators. The meetings continued
regularly, once every week, until the end of the first phase.
The coordinator and the annotators were jointly involved
in the adjudication process of problematic cases. Special
databases and annotation software (XConc) were devel-
oped to maintain the results of adjudication and facilitate
flexible retrieval of annotation results, for reference.

Since we had already finished the term annotation, we
were able to check semantic homogeneity of arguments in
the annotated events. We found that examination of the
distribution of term classes used as arguments was effec-
tive for finding anomalies in annotation, and we made it
a regular practice at the meetings to discover problematic
cases.

There have been changes of annotators. Whenever a new
annotator joined, we trained her/him by using previously
annotated examples, with a constantly-revised manual.
On average, five part-time annotators (graduate students),
one senior coordinator and one junior coordinator have
been involved in annotation throughout the whole period
of 1.5 years.

Annotated information

While the current annotation focuses on identification of
event classes, along with clue expressions for classes and
fillers of the two major roles Cause and Theme, we anno-
tated other semantic roles as well. These role annotations
correspond to semantic role assignments for the comple-
ments and adjuncts of verbs, as seen in linguistics-based
annotation efforts such as PropBank. Except for some
event classes that internally involve locations, these
semantic roles capture the biological context where an
event takes place. Examples of these additional semantic
role annotations are shown in Table 7.
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Table 7: Semantic role types and their annotation instances
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clueLoc

clueTime

clueExperiment

nuclear (135)
in t cells (106)

in human monocytes (57)

in monocytes (50)

in b cells (41)
intracellular (38)

in jurkat cells (34)

in jurkat t cells (33)
in monocytic cells (30)
in t lymphocytes (28)
surface (27)

cells (24)

cytoplasmic (21)

in these cells (20)

in human t cells (20)
t cells (18)

cellular (18)

in activated t cells (17)
to the nucleus (16)

in the nucleus (16)

in hela cells (16)

in thp-1 cells (15)

in b lymphocytes (15)
b cell (15)

in u937 cells (14)

in fibroblasts (13)

b cells (13)
transendothelial (12)
t-cell (12)

into the nucleus (12)

early (15)

subsequent (I3)

during t-cell activation (8)

within 30 min (6)

initial (6)

during aging (6)

during monocytic differentiation (5)
simultaneous (4)

during the immune response. (4)
during erythroid differentiation (4)
at 24 hr (4)

rapidly (3)

for 6 hours (3)

for 6 h (3)

first (3)

during the immune response (3)
during the cell cycle (3)

during t cell activation (3)

during myelopoiesis (3)

during monocyte differentiation (3)
at 8 hr (3)

24 h (3)

within 8 hr of infection (2)

within 6 h (2)

within 4 hours (2)

within 20 min (2)

within 2 h (2)

second (2)

in a primary t cell response (2)
from day 7 to day 14 of culture (2)

electrophoretic mobility shift assays (13)
northern blot analysis (9)

electrophoretic mobility shift assay (7)

by electrophoretic mobility shift assays (7)
using electrophoretic mobility shift assays (4)
in transient transfection assays (4)

in emsas (4)

in electrophoretic mobility shift assays (4)
site-directed mutagenesis (3)

nuclear run-on experiments (3)

in gel mobility shift assays (3)
immunoblot analysis (3)

gel-shift analysis (3)

emsa (3)

cotransfection experiments (3)

by northern blot analysis (3)

by flow cytometry (3)

by electrophoretic mobility shift assay (3)
western blotting (2)

transient transfection experiments (2)
supershift analysis (2)

rt-per (2)

northern blot analyses (2)

northern analysis (2)

mutational analysis (2)

mutational analyses (2)

mobility shift assays (2)

inhibition studies (2)

in transient transfection experiments (2)
in transient assays (2)

Text expressions providing locational (clueLoc), temporal (clueTime) and experimental (clueExperiment) context where biological events take
place. The 30 most frequently observed expressions for each type are listed.

Annotation tools

From time to time, we changed the annotation criteria
and the format of annotation. Since such changes had to
be reflected in previous annotations, we developed a tool
for manual annotation, XConc Suite, which provides
annotators with the functions of retrieving and editing
existing annotations, as well as functions for creating new
annotations.

The XConc (XML-based Concordancer) Suite is an inte-
grated annotation environment providing an XML editor,
a concordancer and an ontology browser which all inter-
act with each other. For example, the users can retrieve
existing annotations and view the concordance in KWIC
(keyword in context) format. Figure 8 shows a screenshot
of XConc. The pane in the bottom shows the list of anno-
tation instances of Regulation (including its child classes,
Positive_regulation and Negative_regulation). Users can
choose an instance from the list in order to open the file
containing the annotation, which will automatically

locate the cursor on the annotation, so that they can easily
make an addition to it.

In the figure, an XML editor in the middle shows an anno-
tation instance from the underlying XML file. The cursor
is located in the text span "sufficient" in the bottom of the
editor window. This is the result of choosing a specific
instance from the annotations list, mentioned above. The
XML editor and the concordancer are integrated with the
ontology browser (shown in the left of the screenshot).
This allows users to select an event or term class (includ-
ing or excluding its child classes) using the browser, both
for annotation creation and annotation search.

The XConc Suite is implemented on top of Eclipse, a
widely used, general-purpose software development plat-
form. This provides the XConc Suite with general func-
tionality for software development, including project and
file management and version control. A proper version
control system, like CVS supported by Eclipse, is particu-
larly crucial for long term software development activities
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Figure 8

Screenshot of XConc Suite. The XConc Suite consists of three plug-ins to Eclipse platform: an XML editor (A), a concord-
ancer (B is the query editor and C is the result view), and an ontology browser (D) which support both the editor and the con-

cordancer for the selection of ontology terms.

like corpus annotation. Another characteristic feature of
the XConc Suite is its flexibility. Since it is developed for
general XML applications rather than for a particular for-
mat, the annotation schemes and corresponding user
interfaces are easily customized by using DTD (Document
Type Definitions) [72] and CSS (Cascade Stylesheets)
[73]. XConc has evolved in parallel with actual annota-
tion work. In particular, the following functionalities of
XConc were found indispensable for efficient and stable
annotation.

1. Functions for Multi-layered Annotation: Our event
annotation is based on the term annotation, which was
completed previously on the same corpus. Arguments of

an event, Cause and Theme, are chosen from already-
annotated terms. This reduces discrepancies in terms of
selection of text spans for arguments. When appropriate
terms were not annotated as such in the term annotation,
annotators were required to report to the coordinators.

2. Functions for Ontologies: The two ontologies, the
GENIA term ontology and the GENIA event ontology, are
represented in OWL, and XConc manages them using Pro-
tégé. While we encouraged annotators to use as many leaf
concepts as possible in the event annotation, we also gave
them guidelines for when they should use broader, less
specific concepts. This avoids forced interpretation and
thus reduces discrepancies. Tools for navigating through
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the ontologies were essential for annotators when choos-
ing the appropriate event classes.

3. Functions for Structured Objects: Unlike the term anno-
tation, the event annotation has to deal with the internal
structures of an event, such as elements which fill the roles
of Theme and Cause. An event can be a role-filler for other
events. Flexible functions for assigning Ids to structured
objects, and for referring to them by these Ids in subse-
quent annotations, are indispensable for efficient annota-
tion.

4. Functions for Retrieval: XConc provides functions for
retrieval of annotations previously made, based on pat-
terns of annotation tags. To examine previous annota-
tions in similar contexts, especially the ones which have
already been adjudicated by the coordinators, is very use-
ful for maintaining homogeneity of annotation.

These functions correspond to ways in which annotators
interact with the corpus in the process of performing their
work.
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