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Abstract. In this paper, we describe a search tool, Kleio, for digital
document repositories in the biomedicine domain. This tool makes use
of semantic metadata to index the document with semantic concepts,
for genes, proteins and other biomedical terms. The necessary seman-
tic metadata results from text mining processes, which in turn make
use of external databases for this domain. The system offers a combi-
nation of textual and metadata searches across MEDLINE, the search
functionality is enhanced by leveraging terminology management tech-
nologies. It covers the entire MEDLINE abstracts. Named entities (NEs)
are annotated on these abstracts in advance and category information
can also be used as a part of queries to narrow down the target articles.
Query expansion is provided at no extra overhead, by the normalization
of biomedical terms. Identifiers from external databases are also included
in the indexed data. Notably, the system implements knowledge acquisi-
tion in automatically generating its acronym dictionary from the corpus
of documents.

1 Introduction

A known and persistent problem with document repositories is getting what
you want out of them. Conventional search methods focus on the distribution
of keywords and most of the information that repositories themselves associate
with a document concern the publishing process. While some users may be well
served by a search based on bibliographic metadata, a much more, need is for
documents that are about a specific topic. It follows that a search tool focusing on
what the document is about would be both more convenient and more intuitive.
However, the prerequisite for such a tool is the availability of semantic metadata,
i.e. information about what the document is about.

The requirement for semantic metadata can be met by making systematic
use of text mining results, and, in particular, the results of Named Entity Recog-
nition (NER). This is a process by which the expressions in a document that are



clearly about something are located and classified. Typically, this will also in-
clude determining the canonical name of the object they refer to. The term NER
derives from the original application of such processing to news-wire articles [29]
where people, places and companies were the terms with the highest priority.
More recently considerable effort has been put into NER in the biomedical do-
main where it is scientific terms that must be identified and their referents are
genes, proteins and other chemical substances.

It is no coincidence that some of the most pressing needs for searching for
documents in large repositories are apparent in the biomedicine domain. We
describe a tool for accessing a document repository in biomedicine that builds
on the text mining results to provide a form of semantic search. This system is
dubbed Kleio, after the Greek muse of history. We highlight several attractive
properties of a semantic search at the level of concepts, rather than keyword
matching. The ability to recognise usage as a particular concept is a primary
and demonstrable advantage when compared to just the occurrence of a par-
ticular word form. The classification of terms allows the organisation of links
between documents in an intuitive manner, so as to aid the incremental refine-
ment of a query and potentially lead to genuine knowledge discovery. Conversely,
determining the canonical form of a term, and in particular of acronyms and ab-
breviations, allows for query expansion to cover all the forms of words that may
refer to that concept.

We describe in some detail the text mining processes on which this tool is
built. This includes the process by which acronyms and their expansions are
learnt from the document collection itself. We also describe the tools used for
indexing the semantic metadata and crucially the design of the interface that
supports several modes of semantic search.

2 Named Entity Recognition (NER)

The purpose of text mining is to make explicit knowledge encoded in text. This
produces semantic metadata associated with documents, as whole, and with
expressions and passages within those documents. Subsequent processing can
build on that metadata, as in our case a semantic search tool. As such, NER is a
primary text mining process. In the sense that it is the most common text mining
process, but equally the one that requires the least analysis of the language of
the text. Perhaps we could characterise this as “open cast” text mining.

What NER does require is informational resources on which the association
between terms in context and semantic categories can be built. This can take two
forms, and will be used in slightly different ways. An annotated corpus can be
used to learn the association between terms and categories. This is most useful
where there is a high degree of ambiguity and the context of use provides vital
cues to the correct association. However, it takes time and effort to produce
annotated corpora covering all the categories that are of interest to biochemists.
On the other hand, databases of technical terms created by domain experts are
often available in the biochemical domain. These can function as a resource for



the more general case of NER where ambiguity is not as prevalent. Nevertheless,
it is essential to make a specific link between annotated NEs and the compounds
denoted, because various synonyms can be used to denote the same compound.
This can be achieved by assigning unique identifiers like SwissProt IDs [42] to
the annotated NEs.

NER has been extensively studied in the biomedical domain, and NER sys-
tems for proteins and genes have also been developed by many research groups [39,
17, 8, 13, 15, 20]. There is also research on the creation knowledge resources for
NER on chemical names. JNLPBA2004 [9] evaluated NER systems with the GE-
NIA corpus [18]. The GENIA corpus has expanded the target NE categories and
defined 47 categories as a hierarchy. Corbett et al. [10] annotated five NE types
of chemical names (i.e. chemical compound, chemical reaction, chemical adjec-
tive, enzyme, chemical prefix) in 42 full-text chemistry papers. They achieved
the inter-annotator agreement F-score of 93%. Kulick et al. [23] created cor-
pora in two domains: gene oncology domain and CYP inhibition domain. In the
latter domain, CYP450 enzymes, other substances, and quantitative measure-
ments are the target NE categories. Kolárik et al. [19] examined available chem-
ical name dictionaries and also annotated MEDLINE abstracts with six chemi-
cal classes, which contain IUPAC(-like) names (names derived from the chemi-
cal structure, e.g. 1-hexoxy-4-methyl-hexane), partial IUPAC class names (e.g.
17beta-), trivial names (commonly used names, e.g. aspirin, estrogen), abbre-
viations and acronyms, chemical family names, and formula/atoms/molecules.
Spasić et al. [37] describe a methodology for rapid development of controlled
vocabularies. Their approach is to utilise an Information Retrieval (IR) system,
automatic term recognition (ATR), and a thesaurus to acquire terms automati-
cally as a practical alternative to both manual term collection and tailor-made
NER methods.

When annotated corpora are available, we can obtain context information
from them and improve the performance of NER. However, as the target types of
relationships or events are broad, different categories will need to be recognised as
well as existing NE categories, such as names of disease or experimental methods.
It will therefore be helpful if we could perform NER even when a training corpus
is not readily available for the target NE categories.

A dictionary-based approach uses existing terminological resources in order
to locate term occurrences in text [4]. The approach is to find a term sequence in
text that matches an entry in a given dictionary. Spelling variations and term am-
biguities of the target entities are major causes of degradation in the performance
of the dictionary-based NE. Dictionary-based NER systems which handle these
problems combine different methods to improve the performance. Krauthammer
et al. [21] use BLAST [2, 3] to identify gene and protein names. Names or English
sentences are converted into nucleotide sequences (e.g. zgap1 → agataagcaaa-
cacccagcg), and approximate string matching is performed on the converted
sequences by BLAST. Tsuruoka et al. [41] employ different methods to handle
the problem, such as filtering annotation using machine learning with a training



corpus, edit-distance operations to allow an approximate term matching, and
dictionary expansion with a variant generator.

2.1 NER Method Used for Kleio

Our method of recognizing NEs is based on the system described in [34], which
consists of two components. The first part, dictionary-based tagging, finds can-
didates for entities using a dictionary. The dictionary maps strings to parts-of-
speech (POS), whose tag set is a slight extension of the Penn Treebank POS tag
set [33]. The NE dictionary is introduced as a subset of noun dictionary, and the
NE tag names are given a new POS tag such as NN-PROTEIN.

We use an open-source morphological analyzer Mecab [27] for NER with
the additional term lists for this part. In practice, the dictionary-based NER
acts as a part-of-speech (POS) tagger. The POS tagger that we used is trained
with Conditional Random Fields (CRFs) [24] using the POS information in the
GENIA corpus4. The Viterbi algorithm is used to find the most probable path
of tags for the input sequence. The NER system converts a sentence into all
possible sequences of words that are registered in given word dictionaries, and
selects the most plausible sequence based on the estimated cost [22]. Therefore,
words that match entries in the dictionary are annotated as NEs when they are
in the selected sequence. This method makes it possible to annotate NEs with
multiple possible sequences of POS taggings, because the system can efficiently
handle n-best POS sequences for NER and also avoid errors inherent in a single-
best POS sequence when a POS tagger is used as a separate pre-processor.

The second part, statistical sequential labelling, is a supervised method with
JNLPBA-2004 training data [9]. The module uses results of dictionary-based
NER as well as word, orthographic and POS information as features to predict
the NE labels. Word features are the surface form of the word and the postfixes
(the last two and four letters of the word). Orthographic features represent the
first letter and last four letters of the word, in a normalized form. Upper case
letters are mapped to “A”, lower case to “a” and digits to“0”, so that AA-0 may
represent the suffix pattern of IL-2.

The NE labels adopts IOB2 format [40], i.e. the first token of the target se-
quence is labeled with “B” of “Beginning” (e.g. B-protein), the intermediate and
the last tokens in the target sequence are labeled with “I” of “Intermediate” (e.g.
I-protein) and other tokens are labeled just as “O” of “Others”. For instance,
the sequence “dendritic cell-specific transmembrane protein” is annotated as “B-
protein I-protein I-protein I-protein”. CRF models are used to predict the IOB2
labels with the above features. For gene and protein names, both first and sec-
ond part are performed for NER. For metabolites and medical terms, only the
first part is performed because currently there is no available training corpus for
these terms.

4 http://www-tsujii.is.s.u-tokyo.ac.jp/GENIA/home/wiki.cgi



2.2 Dictionary Data

We are currently working on extracting relationships between proteins/metabolites
and biomedical terms, therefore additional annotations need to be added to the
documents. To annotate biomedical terms other than proteins and genes, we ex-
tracted entries from external databases. For metabolites, we used HMDB (The
Human Metabolome Database) [43], and for drug names we used DrugBank [44].
For medical terms we extracted several categories from UMLS (Unified Medical
Language System) Metathesaurus [6].

DrugBank is:
“a unique bioinformatics and cheminformatics resource that combines detailed
drug data with comprehensive drug target information. The database contains
nearly 4800 drug entries including more than 1,480 FDA-approved small molecule
drugs, 128 FDA-approved biotech (protein/peptide) drugs, 71 nutraceuticals and
more than 3,200 experimental drugs.”5

HMDB is:
“a freely available electronic database containing detailed information about
small molecule metabolites found in the human body.” “The database is de-
signed to contain or link three kinds of data: 1) chemical data, 2) clinical data,
and 3) molecular biology/biochemistry data. The database currently contains
nearly 2500 metabolite entries including both water-soluble and lipid soluble
metabolites as well as metabolites that would be regarded as either abundant
(> 1 uM) or relatively rare (< 1 nM).”6

UMLS Metathesaurus is:
“a very large, multi-purpose, and multi-lingual vocabulary database that con-
tains information about biomedical and health related concepts, their various
names, and the relationships.” “the Metathesaurus is built from the electronic
versions of various thesauri, classifications, code sets, and lists of controlled terms
used in patient care, health services billing, public health statistics, indexing and
cataloging biomedical literature, and/or basic, clinical, and health services re-
search.”7

The total number of entries in the Metathesaurus we used (2007AC) is
about 7.4 million, from which we extracted the following seven categories: Dis-
ease, Symptom, Organ, Diagnostic/therapeutic procedure (e.g. “MRI”, “cere-
bral blood flow”), Indicator/reagent/diagnostic aid (e.g. “hydrogen peroxide”,
“sulfhydryl reagent”), Phenomenon/process (e.g. “UV radiation”, “automobile
accident”), and Pathologic functions (e.g. “hyperventilation”, “anaphylactic shock”).

Table 1 shows the specifications of terms obtained from databases. The right-
most column shows the average number of synonyms per identifier in each cat-
egory. The number of synonyms per identifier is large in drug and metabolite
names compared to the medical terms.

Figure 1 more clearly shows the differences in the number of synonyms be-
tween resources. The x-axis is the number of synonyms and the y-axis is the
5 http://www.drugbank.ca/
6 http://www.hmdb.ca/
7 http://www.nlm.nih.gov/research/umls/about umls.html



Table 1. Numbers of Entries Extracted from Databases

Category # Terms # Identifiers Ave.

Drugs 26,272 1,200 21.9

Metabolites 48,179 2,966 16.2

Medical Terms 764,529 262,900 2.9

Diseases 301,029 86,624 3.5
Indicators 27,735 12,249 2.3
Organs 143,509 65,794 2.2
Pathologic func. 33,193 10,067 3.3
Phenomena 6,329 2,230 2.8
Procedures 229,934 79,773 2.9
Symptoms 22,800 6,163 3.7

number of identifiers. The distinct number of identifiers in the dictionary is
262,900. For the entries from UMLS, the 35.2% (92,622 / 262,900) of identifiers
have only one entry. On the other hand, the number of identifiers that have only
one entity is 0 in metabolites, and 20 in drugs. Some of the names of metabo-
lites and drugs have a large number of synonyms, because the synonyms also
include chemical names. For example, synonyms of ‘Acetaminophen’ includes
not only its variations (e.g. Acetaminofen, Paracetamol), but also its chemical
IUPAC name (i.e. N-(4-hydroxyphenyl)acetamide) and its chemical formula (i.e.
C8H9NO2).

2.3 Statistics of the NER Results

We applied NER to all 17 million MEDLINE [28] abstracts. The frequency of the
entries are shown in Figure 2. The total number of annotated metabolite/medical
terms is more than 72.3 million. The results show that most of the entries found
in existing databases do not appear in the MEDLINE abstracts. 713,083 of
838,980 entries (85.0%) in our NE dictionary are not found in the abstracts. On
the other hand, the top 80 terms appear more than 100,000 times. The tendency
is the same when the frequency is accumulated for each identifier. 214,588 of
267,066 identifiers (80.3%) in our NE dictionary are not found in MEDLINE
abstracts, and terms which have one of the top 135 identifiers appear more than
100,000 times.

Most of the entries that are not found in the abstracts contain negligible
variations, (e.g. word orders are reversed for searching head words), but some
of them are systematic chemical names such as IUPAC names or chemical for-
mulae, and also brand names of drugs. Though such names rarely appear in the
abstracts, these entries would be beneficial when we apply our NE methods to
a large set of full-text papers, which is one of our directions of future work.

In contrast, terms that account for many of the MEDLINE entries are acronyms
(such as DNA, ATP, CT) and names that can also be used as general nouns
(like ‘alcohol’, ‘water’). Acronyms are often ambiguous, which leads us to intro-
duce a method that uses an acronym dictionary to handle them. These general



Fig. 1. Number of Synonyms at Each Identifier

nouns are also ambiguous with regard to their usage. They can be related to
biochemical pathways, but mostly their usage is more general, e.g. as solvents.
The disambiguation between these usages is also planned future work. In the
following section we describe the acronym handling.

3 Acronym Handling

3.1 Acronym Recognition and Disambiguation

Several studies have been carried out that recognize acronyms and the corre-
sponding long forms (definitions) automatically. These systems use either pre-
defined heuristics/algorithms [1, 5, 35, 38, 45, 46], machine-learning methods [7,
32, 30], or statistics in the source documents [16, 25].

The set of pairs of acronyms and the long forms is created using statistics
over the entire collection of MEDLINE abstracts [31]. We utilized a method
for recognizing acronym definitions in the abstracts to build an acronym dictio-
nary. The algorithm assumes that parenthetical expressions introduce acronym
definitions in the following format:

expanded form ’(’ acronym ’)’ (1)

We regard a parenthetical expression as an acronym if the expression inside
the parentheses satisfies these conditions: it consists of, at most, two words;
it is between two and ten characters long; it contains at least one alphabetic
letter; and the first character is alphanumeric. For each parenthetical expression,
the algorithm enumerates candidates for the expanded forms that begin with



Fig. 2. Frequency of Tagged Entries in MEDLINE

any non-function word and end with the word just before the parenthetical
expression. In order to choose correct expanded forms for each acronym a, the
algorithm computes a score LHa(c) for a candidate of expanded form c:

LHa(c) = freq(a, c) −
∑
t∈Tc

freq(a, t) × freq(a, t)∑
t∈Tc

freq(a, t)
. (2)

In this formula, a is an acronym; c is a candidate of expanded form for the
acronym a; freq(a, c) denotes the co-occurrence frequency of the candidate c with
the acronym a; and Tc is a set of nested candidates, each of which consists of a
preceding word followed by the candidate c. We compile a list of candidates of
expanded forms sorted in the descending order of their scores for each acronym.
The algorithm takes candidates out of the sorted list one by one. An expanded
form is considered valid if: it has a score greater than 2.0; the words in the
expanded form can be rearranged so that all alphanumeric letters in the acronym
appear in the same order; and it is not nested or an expansion of the previously
chosen expanded forms. This method has extracted 886,755 acronym candidates
and recognized 300,954 expanded forms, and achieved 99% precision and 82–95%
recall on the evaluation corpus.

Acronym recognition is also useful for disambiguating global acronyms (i.e.
acronyms without their definitions stated explicitly in abstracts) because it pro-
vides sense inventories (lists of acronyms definitions), training data (context in-
formation of full forms), and local definitions for acronyms. Therefore, we built
classifiers for predicting definitions of acronyms by using the context informa-
tion as training data. Applying the classifiers, we disambiguated the definition
of every acronym in the whole of the MEDLINE abstracts.



Table 2. Re-annotation Results on MEDLINE Abstracts

# terms # NEs w/o AF # NEs w/ AF

ALL 1,877,661,325 72,340,088 72,007,172
Acronym 63,941,442 8,457,864 8,124,948

3.2 Re-annotation of Acronyms

The results of acronym disambiguation are used for checking NE results for
acronyms. First, acronyms in the NE dictionary are annotated as NEs. Then,
once pairs of a long and short form have been obtained from the acronym pair
list, the corresponding long form is searched in the dictionary. If the long form
is found in the abstract but not in the dictionary, the acronym’s annotation is
cancelled. Whereas, when an acronym is not annotated but the long form is
found in the dictionary, the acronym is annotated as an NE.

For instance, “DEA” is registered in the dictionary as an acronym of “Di-
aethanolamin”, but “DEA” is also used as an acronym of “Data Envelopment
Analysis”. With the information in the acronym pair list, the system can check
whether “DEA” in a MEDLINE abstract is used as “Diaethanolamin” or “Data
Envelopment Analysis”, and correctly annotate “DEA” as an NE in the former
case. The reverse is also true, i.e. we can link long forms in the dictionary with
acronyms that are only found in the acronym pair list. For instance, “cardi-
olipin” is often abbreviated as “CL” in the MEDLINE abstracts, but “CL” as
“cardiolipin” is not registered as synonyms in the dictionary. In this case CL is
additionally annotated using the acronym data.

3.3 Re-annotation Results

We applied our our re-labelling method throughout the MEDLINE abstracts. In
this experiment, we used only local acronyms recognition pairs. Table 2 shows the
experimental results with or without acronym filtering (AF). The total number
of words in the articles are 1,877,661,325 and about 72,340,088 of them (3.85%)
are annotated initially, and reduced to 72,007,172 (3.83%) after re-annotation.
On the other hand, the number of acronyms are 63,941,442, and about 8,457,864
of them (13.23%) are annotated initially, and reduced to 8,124,948 (12.71%) after
re-annotation. The total number of re-annotations is 7,236,864, and 3,784,890 of
them are the ones whose annotations are cancelled, and the remaining 3,451,974
entries are newly annotated acronyms. This indicates that even when only local
acronyms are used, we can improve 44.75% (3,784,890 / 8,457,864) of annotated
acronyms without supervised learning. Our classifier can also produce disam-
biguation results for global acronyms. Although disambiguation results of global
acronyms have more noisy results compared to local acronyms, it will improve
the recall of re-labelling of acronyms, and useful for filtering out spurious an-
notations to frequently used acronyms the definitions, such as CI (“confidence
interval”), CT(“computed tomography”), SD(“standard deviation”). It is one of



Table 3. Examples of Re-annotation Results

Freq. Acronym Original tag Corresponding synonym Correct long form

113357 NO - - nitric oxide

56067 CT Metabolite 3beta,5alpha,6beta-
cholestanetriol

computed tomography

52510 AD Drug actinomycin D Alzheimer’s disease

48338 CSF Drug colony-stimulating
factor

cerebrospinal fluid

46874 PKC Disease paroxysmal kinesigenic
choreoathetosis

protein kinase C

35799 NE - - norepinephrine
34796 MR Disease mitral regurgitation magnetic resonance
30328 CI Pathologic func chemically induced confidence interval
29106 HPV - - human papillomavirus

28986 ROS Drug acrosoxacin reactive oxygen
species

23885 MI Metabolite myoinositol myocardial infarction

20773 HCC Disease
hypomyelination
and congenital
cataract

hepatocellular
carcinoma

18651 RA - - retinoic acid
18458 IOP Drug epinephrine intraocular pressure
17935 BM - - bone marrow
17161 NA Metabolite - noradrenaline
15660 CBF - - cerebral blood flow
12715 AR Disease aortic regurgitation androgen receptor
12220 MAP Drug medroxyprogesteron mean arterial pressure
11509 HD Disease Huntington’s disease hemodialysis

our future tasks to introduce global acronym recognition for re-labelling acronym
NEs.

Table 3 shows examples of 20 re-annotation results, in order of (descending)
frequency. The frequency of the re-labelling for each acronym is listed in the
“Freq.” column. “Original tag” shows the semantic categories assigned by our
dictionary-based NER, and “Corresponding synonym” shows one of the syn-
onyms to show the definition of the acronym in the dictionary. When acronyms
are not originally annotated because they are not in the dictionary, these items
are left blank.

We can see that acronym information can be used for modifying annotation
in an uniform way. For example, the term “AD” is annotated as a drug name
because “AD” is registered as an acronym of “Actinomycin D”, but the term is
actually often used as an acronym for “Alzheimer’s disease”. Using the fact that
the disease name is mentioned in the article, the system correctly re-annotate
the acronym. The acronym information also enables it to find additional an-
notations. For example, “NO” is not included as an acronym of “nitric oxide”
in the dictionary, but with the acronym information “NO” is annotated as an
NE (metabolite) after the post-processing. In the same way, “NE” as “nore-
pinephrine” (metabolite) and “RA” as “retinoic acid” (drug) are also newly
annotated as NEs.



4 The Kleio Interface

The results of NER based on external dictionaries form the semantic metadata
that Kleio uses to provide a range of semantic search functions. First, we employ
a standard indexing tool, Lucene [26], to generate an index over the terms for
proteins, genes, metabolites and medical terms that have been recognised. This
is an index of the concepts that are referred to in the text, rather than individual,
or canonical word forms. This means that we can retrieve documents that refer
to a specific concept, although the surface form used may differ in each case, as
in the use of orthographic variant or acronyms instead of their expansions. We
can also base document retrieval on the unique identifier for a concept, providing
a link back to the original databases from which the dictionary was generated.

The primary form of a user query can be similar to a search based on word
forms, except that the terms in the query are interpreted as a set of concepts.
However, the classification of terms into semantic categories allows the user
to specify a specific concept, by associating a semantic category with a query
term. This can radically reduce the search space. This is one easily demonstrable
benefit from basing a search method on text mining results, effectively arising
from an initial query. For example, more than 60,000 documents are returned
when the word “cat” is given as a query. With semantic annotations, however,
the retrieval system can provide a more focused query, because only documents
with that semantic category are returned. In fact, the query “PROTEIN:cat”
returns about 200 documents with “cat” annotated as a protein.

There are other benefits in what happens next. The list of documents re-
turned by the initial query can be organised according to the set of semantic
categories. Effectively, we see these as a set of links between the concepts in the
initial query and those occurring in the same immediate context in each docu-
ment, so for each category we can list the most frequently linked concepts. This
forms a faceted interface to the search results, similar to the kind of structured
interfaces required for products in an e-commerce application [14]. The struc-
ture imposed here reflects the fact that the semantic categories impose on the
concept space. Current knowledge resources provide a single level of partition-
ing into distinct categories. A more complex concept system could be employed,
provided that the dictionaries to support it could be made available. A screen-
shot of the faceted search with Kleio is shown in Figure 3. The faceted search is
implemented using Solr [36].

The user may refine the initial query by combining concepts from the faceted
interface or may pursue the links to the document representations. The docu-
ments themselves are presented with concept markup on all the recognised terms.
This markup includes the concept identifiers which provide a direct link to en-
tries in the databases that the dictionaries are derived from. This is a highly
desirable functionality for most scientists.

Concept identifiers can also be used as search terms once they have been
determined. While query refinement, by combining additional concepts, is an
explicit process , query expansion is implicit and falls out naturally from semantic
search at the concept level.



Fig. 3. Screenshot of the Faceted Search with Kleio

5 Concluding Remarks and Future Work

We have presented a semantic search tool based on text mining results that
use NER technology to locate and classify scientific terms in the biomedicine
domain. The NER processes are dependent on two kinds of knowledge resources:
dictionaries of scientific terms and annotated corpora. The dictionaries provide
the broad sweep of term recognition and are based on available databases for the
domain. Corpora are used for training machine learning algorithms to determine
usage in a specific context. They represent a greater investment of human effort,
even requiring specialised humans. The limited availability of such corpora, or
the resources to build new ones, means that NER based on machine learning
is strategically employed in areas where term ambiguity is a major problem.
Fortunately, this is effective.

Similarly, the quality of the term classification based on dictionaries depends
on the availability of knowledge sources and the information they contain. The
Kleio interface imposes a relatively simple structure on the document results,
because that is the structure provided by the knowledge resources. While the
technology employed could support more complex structures of concepts, the
emphasis is on large scale knowledge resources to get an adequate coverage. The
more immediate extension of the concept space will be the addition of new NE



types, e.g. by employing the OSCAR3 [11] term recognition for chemistry to
classify chemical terms according to the categories described above. Generating
hierarchical categorizations from descriptive keywords as described in [12] will
also be applicable to annotated NEs for enriching the system interface.

We are also in the early stages of applying the technology underlying Kleio to
the PMC corpus, under the auspices of the UKPMC project. This would extend
the NER techniques from abstracts to full papers. This presents a number of
challenges, including the fact that full papers will contain considerably more
potential links between concepts, so that the notion of a local context will have
to be refined. Full papers are also more structured so that some passages, such
as results and conclusions, characterise the content of the document far better
than others. We also expect the full text of papers to provide a greater resource
for the acquisition of acronym expansions, as there will be more space to define
acronyms, particularly more global acronyms that may be left as read in an
abstract.

Overall, we have presented an alternative search tool that makes use of se-
mantic metadata, information about what the documents are about. We believe
that for many users this will be both a convenient and intuitive tool. However,
we are accessing large and important document repositories. There will be var-
ious sorts of users with various needs. One size will probably not fit all in this
context. As Kleio covers the whole of MEDLINE it can address the whole user
community, so that its contribution can mainly be determined by user prefer-
ences.
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19. C. Kolárik, R. Klinger, C. M. Friedrich, M. Hoffman-Apitius, and J. Fluck. Chemi-
cal names: terminological resources and corpus annotation. In Proceeding of Build-
ing and Evaluation Resources for Biomedical Text Mining, pages 51–58, 2008.

20. M. Krallinger, A. Morgan, L. Smith, F. Leitner, L. Tanabe, J. Wilbur, L. Hirsh-
man, and A. Valencia. Overview of BioCreAtIvE: critical assement of information
extraction for biology. BMC Bioinformatics, 6(Suppl 1:S1), 2006.

21. M. Krauthammer, A. Rzhetsky, P. Morozov, and C. Friedman. Using BLAST for
identifying gene and protein names in journal articles. Gene, 259(1–2):245–252,
2000.

22. T. Kudo, K. Yamamoto, and Y. Matsumoto. Applying conditional random fields
to japanese morphological analysis. In EMNLP 2004, pages 230–237, 2004.

23. S. Kulick, A. Bies, M. Liberman, M. Mandel, R. McDonald, M. Palmar, A. Schein,
and L. Ungar. Integrated annotation for biomedical information extraction. In
BioLINK2004, pages 61–68, 2004.



24. J. D. Lafferty, A. McCallum, and F. C. N. Pereira. Conditional random fields:
Probabilistic models for segmenting and labeling sequence data. In ICML2001,
pages 282–289, 2001.

25. H. Liu and C. Friedman. Mining terminological knowledge in large biomedical
corpora. In PSB 2003, pages 415–426, 2003.

26. Lucene. http://lucene.apache.org/java/docs/, 2006.
27. MeCab. http://mecab.sourceforge.net/, 2008.
28. MEDLINE. http://www.pubmed.gov/, 2007.
29. Proceedings of the Sixth Message Understanding Conference, Columbia, MD, USA,

1995. Morgan Kaufmann.
30. D. Nadeau and P. D. Turney. A supervised learning approach to acronym identi-

fication. In 8th Canadian Conference on Artificial Intelligence (AI’2005) (LNAI
3501), page 10 pages, 2005.

31. N. Okazaki and S. Ananiadou. Building and abbreviation dictionary using a term
recognition approach. Bioinformatics, 22(24):3089–3095, 2006.

32. S. Pakhomov. Semi-supervised maximum entropy based approach to acronym and
abbreviation normalization in medical texts. In ACL2002, pages 160–167, 2002.

33. B. Santrini. Part-of-speech tagging guidelines for the penn treebank project, June
1990. ftp://ftp.cis.upenn.edu/pub/treebank/doc/tagguide.ps.gz.

34. Y. Sasaki, Y. Tsuruoka, J. McNaught, and S. Ananiadou. How to make the most
of NE dictionaries in statistical NER. BMC Bioinformatics, 9(Suppl 11:S5), 2008.

35. A. S. Schwartz and M. A. Hearst. A simple algorithm for identifying abbreviation
definitions in biomedical text. In PSB2003, pages 451–62, 2003.

36. Solr. http://lucene.apache.org/solr/, 2007.
37. I. Spasić, D. Schober, S.A. Sansone, D. R. Schuhmann, D. B. Kell, and N. W.

Paton. Facilitating the development of controlled vocabularies for metabolomics
technologie with text mining. BMC Bioinformatics, 2008, 9(Suppl 5), 2008.

38. K. Taghva and J. Gilbreth. Recognizing acronyms and their definitions. Interna-
tional Journal on Document Analysis and Recognition, 1(4):191–198, 1999.

39. K. Takeuchi and N. Collier. Use of support vector machines in extended named
entity recognition. In CoNLL-2002, pages 119–125, 2002.

40. E.F. Tjong Kim Sang and J. Veenstra. Representing text chunks. In EACL-99,
pages 173–179, Bergen, June 1999.

41. Y. Tsuruoka and J. Tsujii. Improving the performance of dictionary-based ap-
proaches in protein name recognition. Journal of Biomedical Informatics, 37:461–
470, 2004.

42. UniProt. http://www.uniprot.org/, 2002–2008.
43. D.S. Wishart and et al. HMDB: The Human Metabolome Database. Nucleic Acids

Research, 35(Database issue):D521–D526, Jan 2007.
44. D.S. Wishart, C. Knox, A.C. Guo, D. Cheng, S. Shrivastava, D. Tzur, B. Gautam,

and M. Hassanali. DrugBank: a knowledgebase for drugs, drug actions and drug
targets. Nucleic Acids Res., 36:D901–906, 2008.

45. J. D. Wren and H. R. Garner. Heuristics for identification of acronym-
definition patterns within text: towards an automated construction of compre-
hensive acronym-definition dictionaries. Methods of Information in Medicine,
41(5):426–434, 2002.

46. H. Yu, G. Hripcsak, and C. Friedman. Mapping abbreviations to full forms in
biomedical articles. Journal of the American Medical Informatics Association,
9(3):262–272, 2002.


