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Abstract

Dictionary-based protein name recognition is often a first step in extracting in-

formation from biomedical documents because it can provide ID information on

recognized terms. However, dictionary-based approaches present two fundamental

difficulties: (1) false recognition mainly caused by short names; (2) low recall due

to spelling variations. In this paper, we tackle the former problem using machine

learning to filter out false positives and present two alternative methods for alle-

viating the latter problem with spelling variations. The first is achieved by using

approximate string searching, and the second by expanding the dictionary with a

probabilistic variant generator, which we propose in this paper. Experimental re-

sults using the GENIA corpus revealed that filtering using a naive Bayes classifier

greatly improved precision with only a slight loss of recall, resulting in 10.8% im-

provement in F-measure, and dictionary expansion with the variant generator gave

further 1.6% improvement and achieved an F-measure of 66.6%.

Key words: protein name recognition, naive Bayes classifier, approximate string

search, spelling variant generator
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1 Introduction

The rapid increase in machine readable biomedical texts (e.g. MEDLINE)

makes automatic information extraction from these texts much more attrac-

tive. One of the most important tasks today is extracting information on

protein-protein interactions from MEDLINE abstracts (1; 2; 3).

To be able to extract information about proteins from a text, one has to

first recognize their names in it. This kind of problem has been extensively

studied in the field of natural language processing as named-entity recognition

tasks. The most popular approach is to train the recognizer on an annotated

corpus by using a machine learning algorithm, such as Hidden Markov Models,

support vector machines (SVMs) (4), and maximum-entropy models (5). The

task of the classifier in the machine learning framework is to determine the

text regions corresponding to protein names.

Ohta et al. provided the GENIA corpus (6), an annotated corpus of MED-

LINE abstracts, which could be used as a gold-standard for evaluating and

training named-entity recognition algorithms. The corpus has fostered re-

search on machine learning techniques for recognizing biological entities in

texts (7; 8; 9).

However, the main drawback of these machine learning approaches is that they

do not provide ID information on recognized terms. For the purpose of extract-

ing information about proteins, ID information on recognized proteins, such

as GenBank 1 ID or SwissProt 2 ID, is indispensable to integrate extracted

1 GenBank is one of the largest genetic sequence databases.
2 The Swiss-Prot is an annotated protein sequence database.
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information with relevant data from other information sources.

Dictionary-based approaches, on the other hand, intrinsically provide ID in-

formation because they recognize a term by searching the one that is most

similar (or identical) in the dictionary to the target region. This advantage

makes dictionary-based approaches particularly useful as the first step in prac-

tical information extraction from biomedical documents (3).

Dictionary-based approaches, however, present two fundamental difficulties.

The first is a large number of false positives mainly caused by short names,

which significantly degrades overall precision. Although this problem can be

avoided by excluding short names from the dictionary, such a solution makes

it impossible to recognize short protein names. We tackle this problem by

incorporating a machine learning technique to filter out the false positives.

The other problem in dictionary-based approaches derives from the fact that

biomedical terms have many spelling variations. For example, the protein name

“NF-Kappa B” has many spelling variants such as “NF Kappa B”, “NF kappa

B”, “NF kappaB” and “NFkappaB”. Exact matching techniques regard these

terms as completely different terms, which results in failure to find these pro-

tein names written in various forms.

We present two alternative solutions to the problem of spelling variation in

this paper. The first is using approximate string searching techniques where

the surface-level similarity of strings is considered. The second is expanding

the dictionary in advance with a probabilistic variant generator, which we

propose in this paper. We present experimental results on the GENIA corpus

to demonstrate their effectiveness,
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This paper is organized as follows. Section 2 overviews our method of rec-

ognizing protein names. Section 3 explains the approximate string searching

algorithm used to alleviate the problem of spelling variations. As an alter-

native solution to the problem, Section 4 describes the probabilistic variant

generator that is used to expand the dictionary. Section 5 describes how false

recognition is filtered out with a machine learning method. Section 6 presents

experimental results obtained using the GENIA corpus. Some related work is

described in Section 7. Finally, Section 8 has some concluding remarks.

2 Method Overview

Our method of recognizing protein names involves the following two phases.

• Candidate recognition phase

The task of this phase is to find protein name candidates appearing in the

text using a dictionary. We propose two alternative solutions to the problem

with spelling variations. The first is to use an approximate string searching

algorithm instead of exact matching algorithms, which is presented in Sec-

tion 3. The second is to expand the dictionary in advance with the variant

generator, which is presented in Section 4.

• Filtering phase

One of the most serious problems with dictionary-based recognition is

the large number of false positives mainly caused by short entries in the

dictionary. Our solution to this problem is to check whether each candidate

is really a protein name or not. In other words, each protein name can-

didate is classified into “accepted” or “rejected” with a machine learning

algorithm. The classifier uses the context of the term and the term itself as
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Fig. 1. Dynamic programming matrix.

the features for classification. Only “accepted” candidates are recognized as

protein names in the final output. Section 5 describes details n the classifi-

cation algorithm used in this phase.

In the following sections, we describe details on the methods used in these

phases.

3 Candidate Recognition by Approximate String Searching

One way to deal with the problem of spelling variations is to use a kind of

“elastic” matching algorithm, by which a recognition system scans a text to

find a similar term to (if any) a protein name in the dictionary. We need a sim-

ilarity measure for this task. The most popular measure of similarity between

two strings is the edit distance, which is the minimum number of operations on

individual characters (e.g. substitutions, insertions, and deletions) required to

transform one string of symbols into another. For example, the edit distance

between “EGR-1” and “GR-2” is two, because one substitution (1 for 2) and

one deletion (E) are required.
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To calculate the edit distance between two strings, we can use a dynamic

programming technique (10). Figure 1 illustrates an example 3 . In matrix

C0..|x|,0..|y|, each cell Ci,j keeps the minimum number of operations needed to

match x1..i to y1..j and can be computed as a simple function of the surrounding

cells:

Ci,0 = i, (1)

C0,j = j, (2)

Ci,j = if (xi = yj) then Ci−1,j−1 (3)

else 1 + min(Ci−1,j, Ci,j−1, Ci−1,j−1).

The calculation can be done either in row-wise left-to-right traversal or in

column-wise top-to-bottom traversal.

There are some algorithms that run faster than the dynamic programming

method in computing uniform-cost edit distance, where the weight of each edit

operation is constant within the same type (11). However, what we expect is

that the distance between “EGR-1” and “EGR 1” will be smaller than that

between “EGR-1” and “FGR-1”, while their uniform-cost edit distances are

equal.

The dynamic programming based method is flexible enough to allow us to

define arbitrary costs for individual operations depending on the letter being

operated on. For example, we can make the cost of a substitution between a

space and a hyphen much lower than that of a substitution between ‘E’ and

‘F’. Therefore, we use the dynamic-programming-based method for our task.

Table 1 lists the cost functions we used in our experiments. As we can see, both

insertion and deletion costs are 100 except for spaces and hyphens. Substitu-

3 For clarity of presentation, all costs have been assumed to be 1.
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Table 1

Cost function.

Operation Letter Cost

Insertion a space or a hyphen 10

other letters 100

Deletion a space or a hyphen 10

other letters 100

Substitution a numeral for a numeral 10

a space for a hyphen 10

a hyphen for a space 10

a capital letter for the corresponding small letter 10

a small letter for the corresponding capital letter 10

other letters 50

tion costs for similar letters are 10. Substitution costs for the other different

letters are 50. Since these costs were heuristically determined by just observing

a number of protein names, it is likely that we could achieve better perfor-

mance by employing a systematic method of determining the cost function

(12).

3.1 String Searching

What we described in the previous section is a method of calculating the

similarity between two strings. However, what we need when trying to find

proteins where is approximate string searching in which the recognizer scans a

text to find a similar term to (if any) a term in the dictionary. The dynamic-

programming-based method can be easily extended for approximate string

searching.

The method is illustrated in Figure 2. In this case, the protein name to be
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Fig. 2. String searching using dynamic programming matrix.

matched is “EGR-1” and the text to be scanned is “encoded by EGR include”.

String searching can be done by just setting the elements corresponding to the

separators (e.g. space) in the first row to zero. After filling the whole matrix,

one can find that “EGR-1” can be matched to this text at the place of “EGR

1” with cost 1 by searching for the lowest value in the bottom row and then

backtracing to the top row along the lowest-cost path.

To take into account the length of a term, we use a normalized cost, which is

calculated by dividing the cost by the length of the term:

(normalized cost) =
(cost) + α

(length of the term)
, (4)

where α is a constant value 4 . When the costs for two terms are equal, the

longer one is preferred due to this constant. In the case of Figure 2, the nor-

malized cost of the term is (1 + 0.4)/4 = 0.35.

To recognize a protein name in a given text, we do the above calculation

for every term contained in the dictionary and select the term that has the

4
α was heuristically set to 0.4 in our experiments. It would be possible to tune the

value by conducting cross-validation on the training data with additional computa-

tional costs.
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lowest normalized cost. If the cost is lower than the predefined threshold, the

corresponding range in the text is recognized as a protein name candidate.

3.2 Implementation Issues in String Searching

A naive way of string searching using a dictionary is to go through the pro-

cedure described in the previous section one by one for every term in the

dictionary. However, since a protein name dictionary is usually large (∼ 105),

this naive way requires too much computational cost to deal with a large

number of documents.

Navarro et al. (13) presented a way of reducing redundant calculations by

constructing a trie of the dictionary. The trie is used as a device to avoid re-

peating the computation of the cost against the same prefix of many patterns.

Suppose that we have just calculated the cost of the term “EGR-1” and we

next have to calculate the cost of the term “EGR-2”; it is clear that we do

not have to re-calculate the first four rows in the matrix (see Figure 2). They

also pointed out that it is possible to determine, prior to reaching the bottom

of the matrix, that the current term cannot produce any relevant match: if

all the values of the current row are larger than the threshold, then a match

cannot occur since we can only increase the cost or at best keep it the same.

We followed their method: we first constructed a trie and fill the matrix one by

one for each term, avoiding redundant calculations. The computational cost

for approximate string searching was very large even with these devices for

efficient computation. In our implementation, it took more than an hour to

process 2,000 MEDLINE abstracts on a 1.13 GHz pentium III server.
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4 Expanding Dictionary with Probabilistic Variant Generator

An alternative way to alleviate the problem of spelling variations is to expand

each entry in the dictionary in advance. For example, if we have the entry

“EGR-1” in the dictionary, we expand this entry to the two entries “EGR-

1” and “EGR 1”. With the expanded dictionary, we can find protein names

written in varied forms simply by using exact-matching algorithms.

For this purpose, we propose an algorithm that can generate only “likely”

spelling variants. Our method not only generates spelling variants but also

gives each variant a generation probability that represents the plausibility of

the variant. Therefore, one does not need to receive a prohibitive number

of unnecessary variants by setting an appropriate threshold for generation

probability.

4.1 Probabilistic Variant Generator

4.1.1 Generation Probability

The generation probability of a variant is defined as the probability that the

variant can be generated through a sequence of operations. Each operation

has an operation probability that represents how likely it is that it will occur.

Assuming independence among operations, the generation probability of a

variant can be formalized in a recursive manner,

PX = PY × Pop, (5)
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Fig. 3. Probabilistic variant generation. Numerals inside parentheses are generation

probabilities, and those along the edges are operation probabilities.

where PX is the generation probability of variant X, PY is the generation

probability of variant Y from which variant X is generated, and Pop is the

probability of the operation by which Y is transformed into X.

Figure 3 outlines an example of the generation process, which can be repre-

sented as a tree. Each node represents a generated variant and its probability.

Each edge represents an operation and its probability. The root node corre-

sponds to the input term and the generation probability of the root node is

1 by definition. We can obtain the variants of an input term in order of their

generation probabilities by growing a tree in a best-first manner.

4.1.2 Operation Probability

To calculate the generation probabilities in our formalization, we need the

probability for each operation.

We used three types of operations for the generation mechanism:

• Substitution
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Replace a character with another character.

• Deletion

Delete a character.

• Insertion

Insert a character.

These types of operations are motivated by the ones used in approximate string

matching. We consider character-level contexts in which an operation occurs,

and the following seven types of contexts are used in this paper. They differ

in relative position to the target and in how much the context is specified:

• the target letter and the preceding two letters.

• the target letter and the preceding letter.

• the target letter and the following letter.

• the target letter and the following two letters.

• the target letter, the preceding letter, and the following letter.

• the target letter, the preceding two letters, and the following two letters.

• the target letter only.

For an operation for a substitution or a deletion, the target indicates a letter

in the string. For an operation for an insertion, the target indicates a gap

between two letters. For example, if the original string is “c-Rel” and the

variant is “c-rel”, the operation is a substitution of ‘R’ with ‘r’. The operation

rules obtained from this example are listed in Table 2. They correspond to

the seven types of aforementioned context. The first rule indicates that if the

letter ‘R’ is preceded by the string “c-”, then one can replace the letter with

‘r’.

The next step is estimating the probability of each rule. The probability should

13



Table 2

Example of operation rules.

Left Context Target Right Context Operation

c- R * Replace the target with ‘r’

- R * Replace the target with ‘r’

* R e Replace the target with ‘r’

* R el Replace the target with ‘r’

- R e Replace the target with ‘r’

c- R el Replace the target with ‘r’

* R * Replace the target with ‘r’

Asterisks represent wild cards.

represent how likely the operation is to occur in a given context. We estimate

the operation probabilities from a large number of variant pairs with the fol-

lowing equation:

Pop = P (operation|context) (6)

≈
f(context, operation) + 1

f(context) + 2
, (7)

where f(context) is the frequency of the occurrence of the context, and f(context, operation)

is the frequency of the simultaneous occurrence of the context and operation

in the set of variant pairs. We adopt Laplace smoothing (adding 1 to the

numerator and 2 to the denominator).

We acquired the actual samples of variant pairs for probability estimation from

the UMLS Metathesaurus (14), which provides a huge number of biomedical

terms and their concept IDs. We first obtained sets of variants by collecting

protein names with the same concept ID. We then selected from each set the

pairs whose edit distance is one, and used them for probability estimation.

For example, we could obtain the following variant pairs from the set shown

in Table 3.
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Table 3

A part of UMLS Metathesaurus.

Concept ID Protein name

: :

C0079930 Oncogene Protein gp140(v-fms)

C0079930 Oncogene protein GP140, V-FMS

C0079930 fms Oncogene Product gp140

C0079930 fms Oncogene Protein gp140

C0079930 gp140(v-fms)

C0079930 gp140 v fms

C0079930 gp140 v-fms

C0079930 v-fms, gp140

C0079930 v-fms Protein

C0079930 V-FMS protein

C0079930 v fms Protein

C0079930 Oncogene protein V-FMS

C0079930 GP140 V-FMS protein

: :

{“gp140 v fms”, “gp140 v-fms”}

{“v-fms Protein, “v fms Protein”}

4.1.3 Generation Algorithm

Once the rules and their probabilities are learned, we can generate variants

from an input term using those rules.

The whole algorithm for variant generation is given below. Note that V rep-

resents the set of generated terms.

(1) Initialization

15



Add the input term to V .

(2) Selection

Select the term and the operation to be applied to it so that the algo-

rithm will generate a new term which has the highest possible probability.

(3) Generation

Generate a new term using the term and the operation selected in Step

2. Then, add the generated term to V .

(4) Repeat

Go back to Step 2 until the termination condition is satisfied.

In the generation step, the system applies the rule whose context matches

any part of the string. If multiple rules can be applied, the rule that has the

highest operation probability is used.

Because this algorithm generates variants in the order of their generation prob-

abilities, the termination condition can be where that the generation proba-

bility for the generated variant is below the predefined threshold or that the

number of generated variants exceeds the predefined threshold.

5 Filtering Candidates by Naive Bayes Classifier

In the filtering phase, we use a classifier trained on an annotated corpus to

suppress false recognition. The objective of this phase is to improve precision

without the loss of recall.

We conduct binary classification (“accept” or “reject”) on each candidate.

The candidates that are classified into “rejected” are filtered out. In other

words, only the candidates that are classified into “accepted” are recognized

16



as protein names in the final output.

In this paper, we use a naive Bayes classifier for this task of classification.

The naive Bayes model is simple but effective and has been used in numerous

applications of information processing including image recognition, natural

language processing, and information retrieval (15; 16; 17; 18). The model

assumes conditional independence among features, and the assumption makes

it possible to estimate the model parameters from limited amount of training

data.

There are some implementation variants with the naive Bayes classifier de-

pending on their event models (19). In this paper, we adopted the multi-variate

Bernoulli event model, in which all features are binary.

5.1 Features

The features of the target must be represented in the form of a vector. for the

input of the classifier. We use a binary feature vector which contains only the

values of 0 or 1 for each element.

In this paper, we use the local context surrounding a candidate term and the

words contained in the term as the features. We call the former contextual

features and the latter term features.

The features used in our experiments are given below.

• Contextual Features

W−1 : the preceding word.

W+1 : the following word.

17



• Term Features

Wbegin : the first word of the term.

Wend : the last word of the term.

Wmiddle : the other words of the term without positional information (bag-

of-words).

Suppose the candidate term is “putative zinc finger protein” and the sentence

is

... encoding a putative zinc finger protein was found to derepress beta- galac-

tosidase ...

We obtain the following active features for this example.

{W−1 a}, {W+1 was}, {Wbegin putative}, {Wend protein}, {Wmiddle zinc},

{Wmiddle finger}.

5.2 Training

The training of the classifier is done on an annotated corpus. We first scan

the corpus for protein name candidates with the dictionary-matching method

described in Section 3 or 4. If a recognized candidate is annotated as a pro-

tein name, this candidate and its context are used as a positive (“accepted”)

example for training. Otherwise, it is used as a negative (“rejected”) example.
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6 Experiment

6.1 Corpus and Dictionary

We conducted experiments on protein name recognition using the GENIA

corpus version 3.02 (6), which contains 2,000 abstracts extracted from the

MEDLINE database. These abstracts were selected from the search results

with the MeSH terms Human, Blood Cells, and Transcription Factors.

The biological entities in the corpus are annotated according to the GENIA

ontology. Although the corpus has many categories such as protein, DNA,

RNA, cell line and tissue, we only used the protein category. When a term

was recursively annotated, only the outermost (longest) annotation was used.

We conducted ten-fold cross-validation for evaluating the methods. Each set

of 200 abstracts was used as the test data, and the remaining 1,800 abstracts

were used as the training data. The results were averaged over the ten runs.

The protein name dictionary was constructed from the training data by col-

lecting all the terms that were annotated as proteins 5 . The average number

of terms contained in the dictionary was 8,055.

Each recognition was counted as correct if both boundaries of the recognized

term exactly matched the boundaries of an annotation in the corpus.

5 We used the training data for constructing the protein name dictionary so that the

recognition performance could be comparable with those of machine learning based

approaches. However, there is a chance that we have lower recognition performance

if we use an external resource for constructing the dictionary.
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6.2 Improving Precision by Filtering

We first conducted experiments to evaluate how much precision had been im-

proved by the filtering process. In the candidate-recognition phase, the longest

matching algorithm was used for candidate recognition.

The results are listed in Table 4. The F-measure is defined as the harmonic

mean of precision and recall:

F =
2 × precision × recall

precision + recall
(8)

The first row shows performance achieved without filtering where all candi-

dates identified in the candidate-recognition phase are regarded as protein

names. The other rows shows performance achieved with filtering using the

naive Bayes classifier. In this case, only the candidates that were classified into

“accepted” were regarded as protein names. Notice that the filtering signifi-

cantly improved the precision (from 46.5% to 71.2%) with only a slight loss

of recall. The F-measure was also greatly improved (from 54.3% to 65.1%).

6.2.1 Efficacy of Contextual Features

The advantage of using a machine learning technique is that we can exploit

the context of a candidate. To evaluate the efficacy of contexts, we conducted

experiments using different feature sets.

The results in Table 4 indicate that candidate terms themselves provide strong

cues for classification. However, the fact that the best performance was achieved

when both feature sets were used suggests that the context of a candidate term

conveys useful information about its the semantic class.

20



Table 4

Precision improvement by filtering.

Feature Sets Precision Recall F-measure

Without filtering N/A 46.5% 65.4% 54.3%

Contextual features 60.1% 58.0% 59.0%

With filtering Term features 68.2% 59.8% 63.7%

All features 71.2% 60.1% 65.1%

Table 5

Effectiveness of approximate string search.

Without Filtering With Filtering

Threshold Precision Recall F-measure Precision Recall F-measure

4 45.8% 67.4% 54.5% 70.6% 61.8% 65.9%

8 42.4% 68.4% 52.3% 69.6% 63.0% 66.1%

12 37.4% 69.3% 48.5% 68.3% 63.9% 66.0%

16 30.6% 70.0% 42.5% 66.7% 64.7% 65.6%

20 21.0% 71.4% 32.4% 63.5% 66.1% 64.7%

6.3 Improving Recall by Approximate String Search

We conducted experiments to evaluate how much we could further improve

recognition by using the approximate string-searching method described in

Section 3. Table 5 lists the results. The leftmost columns show the thresholds of

normalized costs for approximate string searching. As the threshold increased,

the precision degraded while the recall improved. The best F-measure was

66.1%, which is better than that of exact matching by 1.0% (see Table 4). It

should be noted that approximate string-searching without filtering did not

improve F-measure: the decline of precision overwhelmed the improvement of

recall.
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6.4 Expanding Dictionary by Variant Generation

6.4.1 Variant Generator

We used the UMLS Metathesaurus, version 2003AA to learn the operation

rules. Terms having the semantic type of “Amino Acid, Peptide, or Protein”

were used for learning, and they provide 36,112 pairs of spelling variants. Table

6 lists some of the rules obtained their probabilities. The asterisks in the table

represent wild cards, meaning that one can ignore the context of that posi-

tion. Notice that there are many rules for replacing spaces and hyphens. This

suggests that spaces and hyphens are often used interchangeably in protein

names.

The variants of some biomedical terms generated by our algorithm are listed

in Tables 7 to 10. The first two input terms “NF-kappa B” and “transcription

factor” are the two most frequent protein names in the corpus.

The generated variants of “transcription factor” listed in Table 8 are interest-

ing. The first letters of “transcription” and “factor” were capitalized in the

second and third variant respectively. This reflects the fact that the first letter

of a word is often capitalized in biomedical terms. Notice that the plural form

of “factor” is generated in the first variant.

The variants for the input term “tumor necrosis factor” are listed in Table

9. It should be noted that transformation to the British spelling variation for

“tumor” appears in the seventh variant.

The variants for the input term “T cell factor 1” are listed in Table 10. Note

that the variant where a hyphen is inserted between the ‘T’ and “cell” is

22



Table 6

Operation rules and their probabilities.

Operation

Probability Left Context Target Right Context Operation

0.971 * ˆ * delete the target

0.958 * o ea delete the target

0.958 rh ea insert ‘o’

0.952 e hyphen R replace the target with space

0.950 or space 3, replace the target with hyphen

0.950 or hyphen 3, replace the target with space

0.947 TH (1 insert space

0.947 or s a delete the target

0.945 * space tR replace the target with hyphen

0.938 T space Ce replace the target with hyphen

0.938 L space I replace the target with hyphen

0.938 in space bi replace the target with hyphen

0.938 ne space tR replace the target with hyphen

0.938 3 space * replace the target with hyphen

0.938 r hyphen 3 replace the target with space

0.938 E space 1 replace the target with hyphen

0.938 V space I replace the target with hyphen

0.938 ne s R delete the target

0.938 * s 2 delete the target

0.929 start of term l o replace the target with ‘L’

0.929 NA space DE replace the target with hyphen

0.929 NA hyphen DE replace the target with space

0.929 in hyphen A replace the target with space

0.929 rg hyphen * replace the target with space

0.923 k a e delete the target

0.923 x hyphen 1 delete the target

: : : : :

Asterisks represent wild cards.
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Table 7

Generated variants for “NF-kappa B”.

Generation Probability Generated String

1.000 NF-kappa B

0.466 NF kappa B

0.317 NF-kappa-B

0.286 NF-Kappa B

0.233 NFkappa B

0.211 NP-kappa B

0.199 NP kappa B

0.190 NF Kappa B

0.150 NF-kappaB

0.148 NF kappa-B

0.090 NF-Kappa-B

0.081 NP Kappa B

: :

ranked at the top. The eighth variant “T cell factor I” is also interesting,

where the numeral ‘1’ is replaced with the letter ‘I’.

6.4.2 Dictionary Expansion

We conducted experiments on dictionary expansion using the variant genera-

tor. Expansions were done on the terms whose lengths were equal to or longer

than five characters. The maximum number of variants generated for each

term was limited to 100 6 .

Table 11 shows the effectiveness of dictionary expansion. The leftmost columns

show the threshold for generation probability to expand the dictionary. The

6 For equi-probable variants, the program continues to generate even when the

number of variants exceeds the limit.
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Table 8

Generated variants for “transcription factor”.

Generation Probability Generated String

1.000 transcription factor

0.571 transcription factors

0.356 Transcription factor

0.219 transcription Factor

0.206 trancription factor

0.203 Transcription factors

0.137 transcription-factor

0.125 transcription Factors

0.117 trancription factors

0.107 transcription factorss

0.078 transcription-factors

0.073 Trancription factor

: :

Table 9

Generated variants for “Tumor necrosis factor”.

Generation Probability Generated String

1.000 Tumor necrosis factor

0.571 Tumor necrosis factors

0.218 Tumor necrosi factor

0.188 Tumors necrosis factor

0.176 tumor necrosis factor

0.139 Tumor-necrosis factor

0.137 Tumor necrosis-factor

0.125 Tumour necrosis factor

0.124 Tumor necrosis Factor

0.124 Tumor necrosi factors

0.107 Tumors necrosis factors

: :
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Table 10

Generated variants for “T cell factor 1”.

Generation Probability Generated String

1.000 T cell factor 1

0.604 T-cell factor 1

0.498 T cell factor-1

0.301 T-cell factor-1

0.196 T cell factors 1

0.139 T cell factor1

0.137 T cell-factor 1

0.135 t cell factor 1

0.129 T cell factor I

0.124 T cell Factor 1

0.118 T-cell factors 1

: :

Table 11

Effectiveness of Dictionary Expansion

Without Filtering With Filtering

Threshold Precision Recall F-measure Precision Recall F-measure

2−1 46.4% 66.4% 54.6% 71.2% 61.0% 65.7%

2−2 46.5% 67.1% 54.9% 71.6% 61.7% 66.2%

2−3 46.5% 67.4% 55.0% 71.6% 61.7% 66.3%

2−4 46.4% 67.7% 55.0% 71.8% 62.1% 66.5%

2−5 46.0% 68.0% 54.8% 71.7% 62.3% 66.6%

2−6 46.0% 68.1% 54.8% 71.7% 62.3% 66.6%

recall improved as the threshold decreased. The best F-measure was 66.6%,

which is 1.6% higher than that with the original dictionary (see Table 4).
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7 Related Work

Kazama et al. (9) reported an F-measure of 56.5% on the GENIA corpus ver-

sion 1.1 using SVMs. Collier et al. (20) reported an F-measure of 75.9% on 100

MEDLINE abstracts using a Hidden Markov Model. Tanabe and Wilbur (21)

achieved 85.7% precision and 66.7% recall using a combination of statistical

and knowledge-based strategies. They used a transformation-based part-of-

speech tagger to recognize single-word protein names, and hand-crafted rules

to filter out false positives and recover false negatives. Since the evaluation

corpora used in these experiments were different from the corpus used in this

paper, the results are not directly comparable.

Lee et al. (22) reported an F-measure of 69.2% on the GENIA corpus version

3.0 using SVMs. Shen et al. achieved an F-measure of 70.8% on the same cor-

pus by incorporating various features into a Hidden Markov Model. Since the

difference between the GENIA corpora versions 3.0 and 3.02, which we used

in this paper, is small, their results suggest that their methods worked better

than ours regarding recognition. However, their approaches do not provide ID

information on recognized terms.

Krauthammer et al. (23) proposed a dictionary-based method of gene/protein

name recognition. They used BLAST for approximate string matching by

mapping sequences of text characters into sequences of nucleotides that could

be processed by BLAST. They achieved a recall of 78.8% and a precision of

71.1% evaluated with a partial match criterion, which was not as stringent as

our criterion.
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8 Conclusion

We proposed a method of two-phase protein name recognition. In the first

phase, we scan texts for protein name candidates using a protein name dic-

tionary. In the second phase, we filter the candidates with machine learning.

Our method is dictionary-based and can provide ID information on recognized

terms, unlike machine learning approaches.

We presented two approaches to alleviating the low-recall problem caused

by spelling variations. The first is to use an approximate string-searching al-

gorithm instead of exact-matching algorithms. The second is to expand the

dictionary in advance with the variant generator. We found the dictionary ex-

pansion approach to be much more attractive. The main reason was the cost of

computation: the computational cost involved with approximate string search-

ing was far bigger than for exact matching. Since there are huge amounts of

available biomedical documentation, processing speed is an important factor

in information extraction systems.

Experimental results using the GENIA corpus revealed that filtering using

a naive Bayes classifier greatly improved precision with only a slight loss of

recall, resulting in 10.8% improvement in F-measure, and dictionary expansion

with the variant generator gave further 1.6% improvement and achieved an

F-measure of 66.6%.

The future direction of this research involves:

• Use of state-of-the-art classifiers

We have used a naive Bayes classifier in our experiments because it re-
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quires limited computational resources and performs well. There is a chance,

however, of improving performance by using state-of-the-art machine learn-

ing techniques including maximum entropy models and support vector ma-

chines.

• Extending the algorithm for variant generation

Three types of operations were considered in this paper for the mechanism

responsible for generating variants. There can, however, be other types of

operations, such as word-insertion and word-replacement. Our future work

should encompass these types of operations to improve the recall for long

protein names.

• Applying the variant generator to other classes

We conducted experiments only on protein names in this paper. Since

the variant generator can be easily applied to other classes, it would be

interesting to investigate the performance gain on other classes. We expect

to achieve comparable performance gain on at least gene and RNA names.
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