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Abstract  

In this article we present an approach to the automatic discovery of term similarities, 
which may serve as a basis for a number of term-oriented knowledge mining tasks. The 
method for term comparison combines internal (lexical similarity) and two types of 
external criteria (syntactic and contextual similarities). Lexical similarity is based on 
sharing lexical constituents (i.e. term heads and modifiers). Syntactic similarity relies on 
a set of specific lexico-syntactic co-occurrence patterns indicating the parallel usage of 
terms (e.g. within an enumeration or within a term coordination/conjunction structure), 
while contextual similarity is based on the usage of terms in similar contexts. Such 
contexts are automatically identified by a pattern mining approach, and a procedure is 
proposed to assess their domain-specific and terminological relevance. Although 
automatically collected, these patterns are domain dependent and identify contexts in 
which terms are used. Different types of similarities are combined into a hybrid 
similarity measure, which can be tuned for a specific domain by learning optimal 
weights for individual similarities. The suggested similarity measure has been tested in 
the domain of biomedicine, and some experiments are presented. 
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1. Introduction 

 
The vast and constantly increasing amount of information in electronic format demands 
innovative techniques to gather and systematically structure knowledge, usually available 
only (or predominantly) from textual resources. Such resources still contain the most relevant 
and useful information, and are, so far, the principle knowledge sources for both researchers 
and knowledge mining systems. In order to extract knowledge represented in documents, 
main concepts, linguistically represented by terms in a given sublanguage (cf. (Sager 1990)), 
need to be identified and linked. The problem, however, is the huge volume of the textual 
resources, which are constantly expanding both in size and thematic coverage (Hirschman, 
Park, Tsujii, Wong and Wu 2002). In addition, dynamic development and new discoveries in 
many domains have resulted in the deluge of newly coined terms and relationships 
representing and linking newly identified or created concepts, events, associations, etc. These 
facts make the existing terminological resources rarely up-to-date. Since they need to adapt 
constantly to the advent of new knowledge, automatic terminology management tools are 
indispensable for dynamic management of terminological resources.  

Traditional terminology management systems are maintained manually, even when the 
computational support is used to back the terminological work (Sager 1990). We define 
automatic terminology management (ATM) as a set of procedures used to support creation, 
storage, maintenance, update and curation of a terminology. An ATM system typically relies 
on three modules: an automatic term recognition (ATR) module, an automatic term 
structuring (ATS) module, and, an intelligent term manager (ITM). The ATR module is used 
to automatically recognise and extract lexical expressions used to label domain concepts in a 
free text, while the ATS module attempts to organise terms by discovering and establishing 
relationships among them. Finally, the ITM module stores terminological data in an 
appropriate format (e.g. a database) and links terminological entries to respective factual 
databases that provide additional information (e.g. definitions, references to the corresponding 
textual resources or factual databases). 

ATR denotes a set of procedures that are used to systematically extract pertinent terms 
and their variants used in a collection of documents. The main aim of the ATR module is to 
highlight and extract lexical units related to relevant domain concepts, i.e. to extract 
sequences that have potential terminological relevance. However, the main problem in 
designing and implementing ATR procedures in the majority of domains is the lack of clear 
naming conventions in the form of stable term formation patterns and controlled lexical 
resources. Namely, there are no formal or reliable morpho-syntactic criteria that could be used 
to distinguish terms from non-terms based on their internal structure (e.g. terms typically have 
a structure of a noun phrase (NP), but not all NPs are necessarily terms). Additionally, there 
are no firm lexical criteria that can be used in this sense, as term components are not strictly 
confined to controlled vocabularies and “general” words frequently appear as term 
constituents.  

ATR is not the ultimate aim from the terminology management point of view: terms 
should be also related to existing knowledge and/or to each other. Terminological structuring 
typically entails classification or clustering, which play a key role in organising knowledge in 
specialised scientific fields. Term constituents solely cannot be used as reliable criteria for 
terminology structuring, since they rarely systematically reflect functional properties or 
relatedness between entities. Naming conventions are typically defined by some guidelines, 
which may vary in sophistication depending on the subject field (Ananiadou 1994). For 
example, the Guidelines for Human Gene Nomenclature (Lander et al. 2001) include even 
principles such as starting a gene name with a lower case letter and avoiding molecular weight 



designations. Still, these are only guidelines and as such do not impose restrictions to domain 
experts. In addition, they apply only to a subset of terms, while the rest of a terminology often 
remains highly non-standardised. For instance, ad-hoc or arbitrary names can be found 
frequently (such as a gene name “Bride of sevenless” or “Boss”). Such terms cannot be placed 
into an existing knowledge network without referring to features other than lexical. 

Terms typically have a very large number of different features, but only a portion of 
these features are actually used when producing a structured model of a domain. Relevant 
features (or their subsets) are used to establish a notion of similarity among terms, which can 
be used as a basis for term structuring. The notion of term similarity has been defined and 
considered in different ways: terms may have functional, structural, causal, hoponymous, 
localisation or other similarities (Skuce and Meyer, 1991). The key problem is that genuine 
features (i.e. the ones that refer to the relevant properties of concepts denoted by terms) are 
typically unavailable, so other attributes (e.g. corpus-based features of term occurrences) need 
to be used. Therefore, the selection and discovery of relevant features and estimation of term 
similarities are the basic and most challenging problems to be solved (Blake and Pratt 2001).  
 In this article we suggest a domain-independent method for automatic mining of term 
similarities, which can serve as a basis for a number of term-oriented knowledge acquisition 
tasks. The method for term comparison combines internal evidence (lexical similarities) and 
two types of external criteria (syntactic and contextual similarities). While lexical and 
syntactic similarities rely on manually defined patterns, contextual similarity is based on the 
automatic discovery of significant term features through contextual pattern mining.  

The article is organised as follows. In Section 2 we overview related terminology 
management approaches. Section 3 introduces the term similarity measure, and Section 4 
presents experiments and discussion. Finally, Section 5 concludes the article. 
 

2. Related work 

 
Several text mining systems have been developed for the extraction of terminological 
knowledge from corpora. Numerous approaches to ATR have been proposed. Some methods 
(e.g. (Bourigault 1992; Ananiadou 1994)) rely purely on linguistic information, typically 
morpho-syntactic features of term candidates. They are frequently combined with statistical 
approaches (e.g. (Nakagawa and Mori 1998; Frantzi, Ananiadou and Mima 2000)). Further, 
machine-learning techniques have been used to acquire and disambiguate terms from 
specialised corpora (Hatzivassiloglou, Duboue and Rzetsky 2001; Kazama, Makino, Ohta and 
Tsujii 2002).  

Apart from distinguishing terms from non-terms, an additional problem for ATR is 
dealing with terminological variation. In theory, terms should be mono-referential (one-to-one 
correspondence between terms and concepts), but in practice we deal with ambiguities (the 
same term corresponding to many concepts) and variants (many terms leading to the same 
concept). If aiming at systematic acquisition and structuring of domain-specific knowledge, 
then handling term variation needs to be treated as an essential part of terminology mining. 
Few methods for term variation handling have been developed. For example, in the FASTR 
system (Jacquemin 2001) morphological and syntactic variations are handled by means of 
lexicalised meta-rules used to describe term normalisation, while semantic variants are 
handled via a specialised WordNet. Similarly, the C/NC-value method (Frantzi, Ananiadou 
and Mima 2000) for term extraction has been extended to handle orthographic, morphological 
and structural term variants, as well as acronyms (Nenadic, Spasic and Ananiadou 2002a). 
 Several methods have been developed to automatically structure terminological 
knowledge. For example, Bourigault and Jacquemin (1999) used lexical similarities to cluster 



terms. Their idea is based on adapting the term normalisation process proposed within the 
FASTR framework (Jacquemin 2001). A cluster is produced by linking terms that are 
associated by specific syntactic variation links (namely lexical characteristics and possible 
term-formation decompositions), which reflect the internal term structures. Although 
undoubtedly useful, this information is typically insufficient to discover similarities among 
many terms. Even the authors themselves suggested that only 10% of multi-word terms 
automatically extracted from documents benefited from variation-based links produced by 
FASTR. Still, the proposed approach is useful for relating terms within systematically 
structured terminologies, but it would be rather limited when dealing with ad-hoc names, as 
well as with single-word terms, as such terms cannot be compared to other terms without 
using additional features. 

Additional features are typically extracted from a domain-specific corpus by exploring 
different terminological relationships. Such relations can be expressed via a variety of surface 
lexical and syntactic realisations. Approaches based on shallow-parsing range from lexical 
pattern matching (e.g. (Hearst 1992)), via template-based approaches (e.g. (Maynard and 
Ananiadou 1999)), to full parsing of documents using domain-specific grammars (e.g. 
(Yakushiji, Tateisi, Miyao and Tsujii 2001)), and they typically extract specific “named” 
relations. There has been much debate as what types of patterns are the most reliable for the 
extraction of term similarities (cf. (Maynard and Ananiadou 1999)). Lexical patterns are in 
particular effective for the extraction of basic conceptual relationships (such as hyponymy), 
while semantic-frame based approaches can, on the other hand, collect very precise and 
reliable task-specific information. Beside manually engineered patterns, several approaches 
for automatic learning of contextual patterns for general conceptual relations have been 
proposed (cf. (Hearst 1992; Riloff 1996; Finkelstein-Landau and Morin 1999; Thelen and 
Riloff 2002)). However, these approaches are basically oriented towards information 
extraction (IE) tasks, as they are based on predefined types of relationships. Similarly, 
machine-learning approaches have been used to learn lexical contexts expressing a given 
relationship. Many reports (e.g. (Craven and Kumlien 1999; Marcotte, Xenarios and 
Eisenberg 2001)) suggested that such approaches proved to be reliable for retrieving pre-
defined, domain-specific relations. 

On the other hand, various statistical methods (such as co-occurrence frequency counts) 
have also been used to link terms. For example, Maynard and Ananiadou (2000b) and Mima, 
Ananiadou and Nenadic (2001) analysed terms co-occurring in a close proximity to one 
another as a basis for estimating similarities. However, term co-occurrences and statistical 
distributions over larger text units (e.g. documents) may not reveal significant associations for 
some types of relationships (cf. (Hindle 1990; Ding, Berleant, Nettleton and Wurtele 2002)). 
Therefore, statistical and shallow-parsing methods have been combined. For example, Hindle 
(1990) suggested a similarity measure among nouns based on mutual information of subject-
verb and verb-object co-occurrences. His main assumption is that a noun appears as subject or 
object of a restricted set of verbs, and that, consequently, each noun can be characterised by 
the verbs it co-occurs with. Grefenstette (1994) extended this approach by considering other 
grammatical roles.  

In the following Section we suggest a hybrid approach that combines pattern-based and 
machine-leaning techniques with a statistical scoring mechanism to mine similarities among 
terms, which may indicate different types of links among them. We also combine similarities 
based on internal lexical correspondences and different types of corpus-based distributions.  
 



 

3. Mining term similarities 
 
Our approach to discovering term similarities incorporates three aspects of term similarity, 
namely lexical, syntactic and contextual similarity. These similarities are linearly combined in 
order to estimate similarity among terms. In the following subsections we describe each of the 
three similarity measures, and the process of the supervised optimisation of their combination. 

 
 

 
3.1 Mining lexical similarities 
 
The most straightforward approach to measuring term similarities is to measure lexical 
similarity among the words that constitute terms. This idea was exploited by Bourigault and 
Jacquemin (1999) by adapting the term variation conflation process, and by Dagan and 
Church (1994) via “grouping” the list of term candidates according to their heads. We, 
however, generalise these approaches by considering constituents (head and modifiers) shared 
by terms. The rationale behind lexical similarity involves the following hypotheses: (1) Terms 
sharing a head are assumed to be (in)direct hyponyms of the same term (e.g. progesterone 
receptor and oestrogen receptor are both receptors). (2) A term derived by modifying another 
term may indicate concept specialisation (e.g. orphan nuclear receptor is a kind of nuclear 
receptor). More generally, when a term is nested inside another term, we assume that the 
terms in question are related (e.g. retinoic acid and retinoic acid receptor are associated). In 
order to neutralise inflectional and simple structural variations, we compare only normalised 
terms (i.e. singular terms containing no prepositions; terms containing prepositions are 
transformed into the corresponding forms without them (Nenadic, Spasic and Ananiadou 
2002a)). 

Let us now describe the calculation of lexical similarity between terms, which is based 
on common subsequences shared by the terms. By comparing all non-empty sub-sequences 
and not only single modifiers, we want to give more credit to pairs of terms that share longer 
nested constituents, with an additional weight given to the similarity if the two terms have 
common heads. Given a sequence of words s, we will use P(s) to refer to a set of all non-
empty sub-sequences in s. For example, P(orphan nuclear receptor) = {orphan, nuclear, 
receptor, orphan nuclear, nuclear receptor, orphan nuclear receptor}. Formally, lexical 
similarity between terms t1 and t2  (whose heads are denoted by h1 and h2 respectively) is 
calculated according to a Dice-like coefficient formula:  
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The numerators in the formula (1) denote the number of shared constituents, while the 
denominators refer to the sums of total numbers of constituents. Table 1 gives some 
examples.  

 
 
 
 
 



Table 1. Examples of lexical similarities 

i ti                                P(ti) 

1 nuclear receptor {nuclear, receptor, nuclear receptor} 

2 orphan receptor {orphan, receptor, orphan receptor} 

3 orphan nuclear receptor {orphan, nuclear, receptor, orphan nuclear,  
 nuclear receptor, orphan nuclear receptor} 

4 nuclear orphan receptor {nuclear, orphan, receptor, nuclear orphan,  
 orphan receptor, nuclear orphan receptor} 

LS(t1, t2) = 0.67   LS(t1, t3) = 0.83   LS(t1, t4) = 0.72   LS(t2, t3) = 0.72   LS(t3, t4) = 0.75  

 
Lexical similarity is useful for comparing multi-word terms, but it is rather limited 

when it comes to ad-hoc names (since they can have arbitrary constituents) or single-word 
terms. Note that the lexical similarity between two different terms can have a positive value 
only if at least one of them is a multi-word term. Still, in some cases, terms are frequently 
represented by single words (e.g. standardised protein/gene names), so alternative methods 
need to be used to compare them lexically (e.g. approximate string matching). More 
importantly, lexical similarity can capture only restricted types of similarities (typically 
hyponymy and meronymy). Therefore, external similarities are needed in addition to lexical 
term similarity. 
 
 
3.2 Mining syntactic similarities 
 
It has been previously reported (e.g. (Hearst 1992)) that some general (i.e. domain 
independent) lexico-syntactic patterns may indicate functional similarity among terms. For 
instance, the following sequence: 
 

... steroid receptors such as estrogen receptor, glucocorticoid receptor, and  
progesterone receptor ... 

 
suggests that all terms involved in this excerpt are highly correlated, since they appear in an 
enumeration (represented by the such-as pattern), which indicates their similarity. Similar 
patterns have been previously used to infer hyponym relations among words (Hearst 1992). 
We generalise this approach by taking into account patterns in which terms are used 
concurrently within the same context. In our approach, two types of “parallel” lexico-
syntactic patterns are considered: term enumeration expressions and term 
coordination/conjunctions. We hypothesise that a specific type of co-occurrence of terms in 
the parallel patterns (i.e. within identical contexts) shows their functional similarity. More 
precisely, all terms within a parallel structure perform the same syntactic function within a 
sentence (e.g. an object or a subject) and are used in combination with the same verb or 
preposition. This fact indicates their semantic similarity. For example, the parallel usage of 
terms estrogen receptor and progesterone receptor in the following sentence indicates their 
similarity with respect to the transactivation process:  
 

”Transactivation by either estrogen receptor or progesterone receptor  
involves a conserved AF-2 domain.” 

 



Manually defined enumeration patterns (see Table 2) are applied as syntactic filters in 
order to retrieve sets of similar terms. In addition, we used term conjunction and term 
coordination patterns (Klavans, Tzoukermann and Jacquemin 1997) as another type of 
parallel syntactic structure. Two types of argument coordination and two types of head 
coordination patterns are considered (see Table 3). However, these patterns are ambiguous, as 
they may retrieve both coordinated terms and conjunctions of terms (see Table 4). In either 
case, the retrieved terms are associated. The retrieval of terms from a coordinated structure 
requires transformation of coordination constituents, while this is not needed in case of a 
simple conjunction. In an argument coordination (where term arguments are coordinated), the 
coordinated terms could be retrieved by “multiplying” the arguments with the shared head. 
On the other hand, in a head coordination (where term heads are coordinated), the coordinated 
terms could be retrieved by “multiplying” the heads with the shared arguments. We supported 
the two coordination types by the LR(1) grammar rules (Mima, Ando and Aoe 1995), which 
extracted terms from coordinated patterns. In order to differentiate between coordination 
structures and nominal conjunctions, we employed a simple heuristic approach, where the 
“multiplied” candidates were accepted as terms if they occurred independently elsewhere in 
the corpus. In such case, it was hypothesised that the coordination structure was a correct one. 
Otherwise, we considered that that the nominal conjunction was the case, and no 
transformation was performed on the involved terms.  
 
Table 2. Example of term enumeration lexico-syntactic patterns1 

<TERM>([(](such as)|like | (e.g.[,])) <TERM> (,<TERM>)* [[,] <&> <TERM>] [)] 

<TERM> (,<TERM>)* [,] <&> other <TERM> 

<TERM> [,] (including | especially) <TERM> (,<TERM>)* [[,] <&><TERM>] 

both <TERM> and <TERM> 

either <TERM> or <TERM> 

neither <TERM> nor <TERM> 
 

Table 3: Example of term coordination patterns1 

<N>|<Adj>) (,(<N>|<Adj>))* [,] <&> (<N>|<Adj>) <TERM> 

(<N>|<Adj>)/(<N>|<Adj>) <TERM> 

(<N>|<Adj>) <TERM> (,<TERM>)* [,] <&> <TERM> 

(<N>|<Adj>) <TERM>/<TERM> 
 
Table 4. Example of ambiguities of coordinated structures 

head coordination [adrenal [glands and gonads]]  →  adrenal glands, adrenal gonads 

term conjunction [adrenal glands] and [gonads]  →  adrenal glands, gonads 
 
When calculating the syntactic similarity, we do not discriminate among different 

syntactic relationships among terms (represented by different patterns), but instead, we 
consider terms appearing in the same syntactic roles as highly semantically correlated. Based 
on co-occurrence of terms in these parallel lexico-syntactic patterns, we define the syntactic 
similarity (SS) measure for a pair of terms as 1 if the two terms appear together in any of the 
patterns, and 0 otherwise.  



The parallel lexico-syntactic patterns provide a term similarity measure with high 
precision, but low recall, as terms do not frequently appear in parallel patterns relative to the 
number of term occurrences (in particular for smaller corpora). For this reason, we need other 
important contextual patterns in which terms tend to appear in order to compare them. 
 
 
 
 
3.3 Mining contextual similarities 
 
Determining the similarity of terms based on their contexts is a standard approach based on 
the hypothesis that similar terms tend to appear in similar contexts (Maynard and Ananiadou 
2000a). Contextual similarity, however, may be determined in a variety of ways depending on 
the definition of context.  

Our approach to contextual similarity is mainly based on the Harris’ notion of 
substitutability: if two terms can substitute each other in many similar contexts, then they can 
be deemed similar. In our approach, the main hypothesis is that if two terms appear in a 
number of similar, domain important contexts, then they can be deemed similar. Take, as an 
example, the term “ligand-inducible transcription factor” (or LITF, for short). By exploring 
its occurrences (see Table 5), we can see that this term typically appears in a context that can 
be described as “belonging to a superfamily of”. This description follows a certain contextual 
pattern:  
 

<TERM(s)> (belong to | be member(s) of) superfamily of  LITF 
 
Furthermore, nuclear receptor is frequently used to modify superfamily, while typically less 
significant and less content-bearing words (e.g. novel member, or large superfamily, or 
structurally related LITF) can be inserted in the pattern, without significantly affecting its 
structure or meaning. Similarly, terms ligand-dependent transcription factors and ligand-
activated transcription factor appear in similar contexts, following the same pattern (see 
Table 6). Also, other terms (such as nuclear receptors, nuclear hormone receptors, nuclear 
steroid hormone receptors, hormone-dependent transcription factors) can be found in the 
similar patterns, and all these terms are mutually associated. Based on this, we hypothesise 
that such context patterns can be used to establish term similarities. 
 
Table 5. Sample contexts of the term “ligand-inducible transcription factor” 
... T3R belongs to the nuclear receptor superfamily of ligand-inducible transcription factors... 

... The retinoid receptors belong to a large superfamily of ligand-inducible transcription factors ... 

... VDR, which belongs to the nuclear receptor superfamily of ligand-inducible transcription factors... 

... ER, a member of a large superfamily of nuclear receptors, is a ligand-inducible transcription 

factor... 

... This receptor is a novel member of the superfamily of ligand-inducible transcription factors, ... 

... RXR, a member of the superfamily of nuclear receptors, is a ligand-inducible transcription factor... 
 
 
 
 
 



Table 6. Sample contexts of terms similar to the term “ligand-inducible transcription factor” 
... an unique nuclear receptor belonging to the superfamily of ligand-dependent transcription factors ..

... a family of ligand-dependent transcription factors ... 

... TRs and steroid hormone receptors belong to a large superfamily of nuclear hormone receptors ... 

... a novel orphan receptor in the nuclear receptor superfamily of ligand-activated transcription 

factors ... 

... PPARs are members of the steroid/thyroid nuclear receptor superfamily of ligand-activated 

transcription factors.... 

 
However, there are two problems. Firstly, there is a variety of similar patterns, whose 

lexical variability (including the variability in length) needs to be neutralised if we intend to 
use them a basis for term comparison. Secondly, the problem is to distinguish 
terminologically important contexts, as terms may also appear in contexts that are not relevant 
for establishing their similarities. Consider, for example, frequently used, but non-informative 
and non-discriminative pattern <TERM> has been recently reported to .... In order to resolve 
these problems, several authors restricted contexts to either “bag-of-specific-entities” 
approach (e.g. Grefenstette (1994) considered only lexicalised subject/object and modifier 
relations), or a pre-defined set of patterns was used (e.g. Maynard and Ananiadou (1999) used 
a set of clustered, pre-defined semantic frames that were deemed domain relevant). Our idea 
is to observe substitution restrictions and substitution relations in a corpus, and to use 
automatically extracted, terminologically relevant contextual patterns as features for mining 
similarities among terms.  

More precisely, our approach to contextual similarity is based on automatic pattern 
mining. The aim is to automatically identify, normalise and harvest the most important 
context patterns in which terms appear. Context pattern (CP) is defined as a generalised 
regular expression that corresponds to either left or right context of a term, which are treated 
separately. The following example shows two left context patterns of the term ligand-
inducible transcription factor: 
    
(2) V:belong   PREP:to    TERM:nuclear_receptor    NP:superfamily    PREP:of 

V:belong   PREP        TERM:nuclear_receptor    NP               PREP 
 
Different types of context constituents and different levels of generalisation can be considered 
as important for characterising terms. The main challenge is to select information relevant for 
measuring similarity that will include the maximal possible generalisation with the minimal 
loss of “term identity”. For example, in (2), the second pattern is more general, but may be 
discriminative enough to correctly link similar terms. 

We consider two types of constituents: morpho-syntactic (such as noun and verb 
phrases, prepositions, etc.) and terminological (i.e. term occurrences). Morpho-syntactic 
constituents can be identified by applying a tagger and appropriate local grammars (which 
recognise chunks, such as NPs, VPs), while terminological entities can be recognised either 
by an ATR processor or by a controlled vocabulary. In the simplest case, contexts are mapped 
into the syntactic categories of their constituents. However, lemmatised forms for each of the 
syntactic categories can be used as well to instantiate the constituents in question. For 
example, the context “belongs to the nuclear receptor superfamily of” of the term “ligand-
inducible transcription factor” can be mapped into any of the following CPs: 

 
 



V   PREP  TERM   NP   PREP   (non-instantiated pattern) 
V   PREP  TERM:nuclear_receptor   NP   PREP:of   (partially instantiated pattern) 
V:belong   PREP:to  TERM:nuclear_receptor  NP:superfamily  PREP:of  (instantiated 
pattern) 

 
Some of the syntactic categories can be removed from the context patterns, as not all of 

them are equally significant in providing useful contextual information (Maynard and 
Ananiadou 2000a). For example, adjectives (that are not part of terms), adverbs and 
determiners can be removed from context patterns as they rarely bare some specific 
information. In addition, so-called linking words (e.g. however, moreover, etc.), or, more 
generally, linking devices (e.g. verb phrases such as result in, lead to, entail, etc.) are 
frequently used in special languages in order to achieve more effective communication 
(Sager, Dungworth and McDonald 1980). However, these constituents are typically non 
informative and can be eliminated. At the same time, the important constituents can further be 
instantiated, in order to specify their semantic content. CPs that have certain types of 
constituents instantiated and some constituent types discarded, will be called canonical CPs.  

In the experiments reported in this article, we instantiated terms and either verbs or 
prepositions, as these categories were regarded as significant for term comparison. As 
indicated in many studies, terms are the most informative entities in documents, and 
characterise them semantically. Also, similar terms typically co-occur in near proximity with 
their "friends" (Maynard and Ananiadou 2000a), so it is justifiable to instantiate them as they 
seem to be good indicators of similarity among terms. Further, verbs proved to be useful for 
characterising NPs appearing as subjects and objects (cf. (Hindle 1990; Grefenstette, 1994)), 
as well as anchors for many IE tasks (Riloff 1996). Also verbs (and their complementation 
patterns) have been used to guide the term classification tasks (Spasic, Nenadic and 
Ananiadou 2003b). Finally, as prepositions may denote some relationships (e.g. the 
preposition with may denote the meronymy (“has part”) relation, while in may denote 
localisation), they are beneficial for indicating term similarities.  

Finally, in order to address the problem of variable pattern lengths, we have decided to 
generate all possible “linearly nested” patterns for each given context. Precisely, when 
considering left contexts, contexts of the maximal length (without crossing the sentence 
boundary) are initially selected, and they are then iteratively trimmed on the left side until the 
minimal length is reached. Right contexts are treated analogously. Maximal and minimal 
lengths are chosen empirically: in the experiments reported in this article, we have set the 
minimal pattern length to 2, and the maximal length to 10. The following example illustrates 
the left linear pattern generation process: 
 

V   PREP   TERM   NP   PREP   (the maximal pattern) 
     PREP   TERM   NP   PREP  
                  TERM   NP   PREP  
                               NP   PREP   (the minimal pattern) 

 
Although nested CPs may seem to be redundant in a given context, they may be relevant for 
comparison with other (shorter) contexts. However, we will assume that longer contexts are 
more important for assessing term similarities. 
  Let us now describe the process of constructing CPs and determining their importance. 
First, we collect concordances for all terms for which term similarities are to be analysed. For 
each term occurrence, the maximal left and right canonical CPs are extracted, and nested CPs 
are generated. Once we have canonical CPs, we calculate the values of a measure called CP-
value in order to estimate the importance of the CPs. CP-value is inspired by the C-value 



measure for assigning termhoods to term candidates (Frantzi, Ananiadou and Mima 2000), 
and by the cost criteria introduced in (Kita, Kato, Omoto and Yano 1994). 

The CP-value measure assigns importance weights as follows: the weights for CPs that 
do not appear as nested elsewhere (e.g. some of the maximal length CPs) are proportional to 
their frequency and length. As indicated above, we assume that longer CPs should be given 
more credit, as it is less probable that a longer CP (that is terminologically important for a 
domain) will appear with the same frequency as shorter CPs. Thus, if a longer CP appears as 
frequently as a shorter one, we assign a higher value to the longer CP, as we believe that the 
fact that the longer CP appears frequently is more significant (this effect is moderated by the 
application of the logarithm function, see later). 

If a CP appears as nested, we take into account both the number of times it appears as 
maximal (positive impact – CPs appearing frequently as maximal CPs should be given more 
credit), and the number of times it appears as nested (small negative impact). Therefore, the 
absolute frequency of the nested CP is reduced by its frequency as nested, resulting in its 
independent frequency of occurrence. Further, since a CP is more relevant if it appears as 
nested in fewer CPs, we want to “normalise” the frequency of “nested occurrence” by 
dividing it by the number of other CPs that contain the CP in question. More precisely, CP-
value of a pattern p is defined as  
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where f(p) is the absolute frequency of p, | p | is its length (as the number of constituents), Tp 
is a set of all CPs that contain p, and consequently | Tp | is the frequency of its occurrence 
within other CPs. 

As indicated earlier, left and right CPs are treated separately. Table 7 shows examples 
of left context patterns extracted from a collection of Medline abstracts (Medline 2002). The 
CPs whose CP-values are within the threshold boundaries can be deemed important: CPs with 
very high CP-values are typically general patterns, while CPs with low CP-values may be 
irrelevant (they typically have low frequency). Note, however, that middle-ranked patterns are 
domain-specific and that they are automatically extracted from a corpus.  
 
Table 7. Example of left CPs (terms and most frequent verbs are instantiated) 
Contextual pattern CP-value  
PREP   NP 272.65  
PREP   NP   PREP 186.47  
.   .   . .   .   .  
PREP  NP   V:stimulate 9.32  
V:indicate   NP 5.00  
PREP   NP   PREP   V:involve NP 4.64  
PREP   TERM:transcriptional_activity 4.47  
V:require   NP   PREP 4.38  
PREP TERM:nuclear_receptor PREP    4.00  

 
At this point, each term is associated with a set of the most characteristic left and right 

patterns in which it occurs. As we treat CPs as term features, we have used a Dice-like 
coefficient to estimate contextual similarity between terms as a function of both common and 



distinctive features. Let CL1, CR1, CL2 and CR2 be sets of left and right CPs associated with 
terms t1 and t2 respectively. The contextual similarity (CS) between t1 and t2 corresponds to 
the ratio between the number of common and all significant CPs they appear in: 
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The multiplication parameter in the formula (4) is used to normalise the value of the CS, so 
that it has the value of 1 when two identical terms are compared. 
 
 
3.4 Combining similarities 
 
None of the similarities introduced so far is sufficient on its own to define term similarity 
measure between two arbitrary terms (see also Section 4). For example, our experiments have 
shown that syntactic similarity provides high precision, but extremely low recall (less than 
1%) when used on its own, as not all terms appear in parallel lexico-syntactic expressions. 
Furthermore, if a term appears infrequently or within very specific CPs, the number of its 
significant CPs will influence its contextual similarity to other terms. On the other hand, there 
are concepts that have idiosyncratic names, which thus cannot be classified relying 
exclusively on lexical similarity.  

In order to make use of all possible information, we introduce a hybrid term similarity 
measure (called the CLS similarity) as a linear combination of the three similarity measures: 
 

CLS(t1, t2)  = α CS(t1,t2) + β LS(t1,t2) + γ SS(t1,t2)  
 
where α + β + γ = 1. Since CS, LS and SS are similarity measures (they are reflexive and 
symmetric), their linear combination also has these properties. Still, the choice of the weights 
α, β and γ in the previous formula is not a trivial problem. In our preliminary experiments we 
used manually chosen values, but, then, an automatic learning method was used to suggest the 
optimal weights. The learning method uses an existing ontology to provide a training set of 
terms. Ontology-based term similarities (used as a “gold” training standard) are calculated 
using both the vertical position of terms and their horizontal distance in the ontology. Namely, 
we use a commonality measure as the number of shared ancestors between two terms in the 
ontology, and a positional measure as a sum of their tree depths, i.e. distances from the root 
(Maynard and Ananiadou 2000b). Similarity between two terms then corresponds to the ratio 
between commonality (common) and positional (depth) measures:  
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In order to determine an optimal solution for the weights, we used a genetic algorithm 

approach. Genetic algorithms (GAs) are meta-heuristics incorporating the principles of natural 
evolution and the idea of “survival of the fittest” (Reeves 1996). A solution is encoded as a 
sequence of “genes”, referred to as an individual. In our case, an individual is represented as a 
triple2 (α, β, γ), where α + β + γ = 1. In the initial phase of the GA we generate in a random 
manner a number of triples (α, β, γ) such that α, β, γ > 0 and α + β + γ = 1. 

Operators typical of GAs, namely selection, crossover, mutation, and replacement, are 
applied, in that order, in each iteration of the GA. We use the tournament selection, a 



technique where a group of individuals is singled out randomly, and after that the fittest ones 
are selected for crossover. A uniform crossover is used, so that each gene position is chosen 
with 50% probability for the genes at that position to be swapped. Finally, the mutation 
operator introduces diversity into a population by modifying a small portion of newly formed 
solutions. Random triples (α, β, γ) are changed in the following manner: one of α, β, γ is 
randomly chosen and its value is changed randomly, and other values are adjusted so that α + 
β + γ = 1. 

Once a sufficient number of new solutions have been created by applying the three GA 
operators, they are evaluated according to a predefined quality criterion, called fitness. As we 
want to minimise the deviation of the CLS similarity values from the similarity values derived 
from the ontology, we estimate the fitness of a triple (α, β, γ) through the Euclidean distance 
as follows: 
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In formula (6), T is a set of training terms appearing in the training corpus, CLSαβγ(t1, t2) is the 
CLS similarity measure calculated for the given weights (α, β, γ), and O(t1, t2) is the similarity 
measure derived from the ontology by formula (5). The goal is thus to find a triple that 
minimises the value of the fitness function.  
 Once all the new individuals have been evaluated, the fittest ones replace the 
appropriate number of the less fit old solutions, thus forming a new population. This process 
is repeated until a stopping condition is fulfilled. The stopping condition is satisfied if the 
current generation contains an individual for which the value of the evaluation function is 
smaller than a given threshold, or if a certain number of iterations have been performed.  
 
 

4. Experiments and discussions 
 
We have performed a series of experiments with mining term similarities from biomedical 
corpora. We have firstly experimented with manually extracted and marked terms from the 
Genia biomedical corpus (Ohta, Tateisi, Kim, Mima and Tsujii 2002), which contains 2,000 
abstracts and around 30,000 terms. The experiments have shown that LS is highly accurate in 
predicting associations between terms that have high values for LS, but that it has typically 
revealed only the hyponymy relationships. Although the majority of terms have at least one 
lexically similar term, only 2-3% of term pairs can be compared lexically, with only 5% of the 
semantically closest terms having positive LS. 

Syntactic, co-occurrence based similarity has been even more sparse: less than 1% of 
the semantically closest terms have appeared in parallel patterns. Also, term coordination 
expressions are infrequent (in the Genia corpus, around 2% of term occurrences). 
Furthermore, just one third of terms appearing in coordination expressions could be found 
elsewhere in corpora, while the precision of the proposed approach for differentiating between 
term coordination structures and conjunctions was approximately 70%. On the other hand, 
coordinations typically assume that coordinated terms share constituents (either arguments 
or/and heads), and, thus, terms involved in a coordination expression can be typically 
compared lexically with high values for the respective LS. For example, the average lexical 
similarity among terms that co-occurred in a coordination expression in the Genia corpus was 
2.4 times the average lexical similarity for all terms.  



While lexical and syntactic similarities have low coverage, the CS similarity provides a 
similarity measure that covers the majority of semantically linked term pairs. The experiments 
have shown that its recall is significantly higher than recall of other two measures at all 
precision points. The maximal recall for the Genia terms was above 80% at 60% precision. 

In the second set of experiments, the hybrid CLS measure has been tested with multi-
word terms automatically extracted by the C/NC-value method (Frantzi, Ananiadou and 
Mima 2000) from a corpus of 2,082 abstracts retrieved from the Medline database (Medline 
2002). The corpus has been tagged by the EngCG shallow parser (Voutilainen and Heikkila 
1993) coupled with a set of simple local grammars for the NP/VP chunking. The first 
experiments were performed with manually chosen values 0.3, 0.3 and 0.4 for α, β, and γ 
respectively. For the CP mining task, the minimal and maximal pattern lengths have been set 
to 2 and 10 respectively, while the interval for relevant CPs has been chosen as follows: 5% 
of the top ranked patterns were discarded as general, while the lower CP-value threshold has 
been set empirically at 2.0.  

Random samples of results have been evaluated by a domain expert. Table 8 shows 
similarity of the term retinoic acid receptor to a number of terms. The examples point out the 
importance of combining different types of term similarities. For instance, the low value of 
contextual similarity for retinoic X receptor (caused by relatively low frequency of its 
occurrence in the corpus) is balanced out by the other two similarity values, thus correctly 
indicating it as a term similar to the term retinoic acid receptor. On the other hand, the high 
value of contextual similarity for signal transduction pathway is neutralised by the other two 
similarity values, hence preventing it as being labelled as highly similar to retinoic acid 
receptor. 
 
Table 8. Example of similarity values between retinoic acid receptor and other terms 

Term LS SS CS CLSmanual 

nuclear receptor 0.61 1.00 0.58 0.76 

retinoic X receptor 0.67 1.00 0.32 0.70 

progesteron receptor 0.61 0.00 0.35 0.29 

signal transduction pathway 0.00 0.00 0.75 0.23 

retinoic acid 0.33 0.00 0.31 0.20 

receptor complex 0.11 0.00 0.52 0.19 
 

The CLS measure proved to be consistent in the sense that similar terms shared the same 
"friends". For example, the similarity values of two highly associated terms glucocorticoid 
receptor and estrogen receptor (the value of their similarity is 0.68) with respect to other 
terms are mainly approximate (see Table 9). 

We have also used automatically tuned parameters for the calculation of CLS 
similarities. A simplified ontology (produced by a domain expert) was used as a source for 
establishing term similarity weights. The supervised learning of parameters (described in 
Section 3.4) resulted in the values 0.13, 0.81 and 0.06 for α, β, and γ respectively (cf. (Spasic, 
Nenadic, Manios and Ananiadou 2002)). Note that lexical similarity appeared to be the most 
important, and syntactic similarity to be insignificant. We believe that there are several 
reasons for that. First, the ontology used as a seed for learning term similarity weights 
contained well-structured and standardised terms, which resulted in the lexical similarity 
being promoted as the most significant. On the other hand, the syntactic similarity is corpus-



dependent: the size of the corpus and the frequency with which the concurrent lexico-
syntactic patterns are realised in it, affect its relevance. In the training corpus such patterns 
occurred infrequently relative to the number of terms.  

 
Table 9. Example of similarity values for glucocorticoid receptor and estrogen receptor and 
other terms 

Term glucocorticoid receptor estrogen receptor  

steroid receptor 0.66 0.64  
progesterone receptor 0.55 0.59  
human estrogen receptor 0.28 0.37  
retinoid x receptor 0.27 0.36  
nuclear receptor 0.30 0.33  
receptor complex 0.31 0.33  
retinoic acid receptor 0.29 0.29  

retinoid nuclear receptor 0.26 0.26  

 
In Table 10 we compare the similarities of the term retinoic acid receptor to a number 

of terms. The first column represents the similarity values calculated with manually chosen 
weights, the second shows the corresponding values obtained with automatically learned 
weights, while the third column stands for the similarity values derived from the ontology. 
The measure with automatically determined weights showed a higher degree of stability 
relative to ontology-based similarity measure. For example, the ratio between the values in the 
first and third column ranged from 1.05 to 2.31, whilst the same ratio for the second and third 
column ranged from 1.26 to 1.54. 
 
Table 10. The comparison of similarity values for term retinoic acid receptor  

Term 
CLS 

α= 0.3, β=0.30, γ= 0.40 
CLS 

α= 0.13, β=0.81, γ=0.06 O 

nuclear receptor 0.76 0.63 0.80 

progesterone receptor 0.29 0.45 0.67 

estrogen receptor 0.29 0.49 0.67 

glucocorticoid receptor 0.29 0.49 0.67 

human estrogen receptor 0.28 0.37 0.57 

 
We have further experimented with term clustering using the CLS similarity. Clustering 

has been applied to a set of 174 top-ranked terms automatically extracted from the corpus 
using the C/NC-value method (Frantzi, Ananiadou and Mima 2000). Each row in the 
similarity matrix represented a similarity vector corresponding to the CLS similarity values 
between a given term and other terms from the set. The Euclidian distances between such 
vectors were used to establish clusters. We used hierarchical clustering based on two different 
clustering methods: the nearest neighbour and the Ward's method (cf. (Theodoridis and 
Koutroumbas 1999). These two methods are opposed to each other in the sense that the 



nearest neighbour tends to produce long chain-like clusters, since the clusters are linked via 
their nearest members, while the Ward’s method favours spherical clusters by minimising the 
increase in the sum of the distances between the members of a cluster. In both cases, the 
resulting hierarchy (dendrogram) was subsequently decomposed into a set of clusters by 
cutting off the hierarchy at the certain depth (chosen empirically) and collecting the leaves 
corresponding to sub-trees being cut off (see Figure 1). 

 
      

   

 
 

Figure 1. Producing clusters by cutting off the subtrees of the dendrogram 
 

The resulting clusters have been evaluated by a domain expert, and the results, after 
discarding the singleton clusters, are given in Table 11 (see also (Nenadic, Spasic and 
Ananiadou 2002b)). Although the distribution of clusters differed significantly for the two 
clustering methods, the overall precision did not considerably vary: both methods achieved 
around 70% precision in clustering semantically similar terms. However, the higher number 
of small clusters produced by the Ward's method was preferred by the human evaluators, as 
the clusters were more coherent. 
 
Table 11. Clustering results 

Nearest neighbour Ward’s method 

# of correct # of correct Cardinality 
of a cluster # of  

clusters clusters terms 
# of  

clusters clusters terms 

2 16 7 (44%) 14 33 22 (67%) 44 

3 7 6 (86%) 18 19 10 (53%) 30 
4 4 2 (50%) 8 5 3 (60%) 12 

≥ 5 10 7 (70%) 47 2 1 (50%) 8 
Total: 37 22 (59%) 87 (63%) 59 36 (61%) 114 (71%) 

 
Beside term clustering, the CLS similarity measure can be used for a number of term-

oriented knowledge mining tasks. For example, a term-based corpus query engine has been 
presented in (Spasic, Nenadic, Manios and Ananiadou 2003a). Its main aim is to help domain 
specialists in locating and extracting related knowledge from scientific literature by using 
similarities among terms. Before querying, a corpus is automatically terminologically 
processed (the terminology recognition is based on the C/NC-value method, and similarities 
are mined by the method presented here). The results of terminology processing are stored in 



an XML-native database (used as an ITM), which is subsequently used to query a corpus. 
Users can then formulate queries that generalise the classical IE task by retrieving, for 
example, entities that are “similar” or “associated” with given query terms.  

 
 

5. Conclusions and further research 
 
In this article we have presented a method for automatic mining of term similarities from 
documents. The method is based on combining lexical, syntactic and contextual similarities 
among terms and their occurrences. Lexical similarity exposes the resemblance among the 
words that constitute terms. Syntactic similarity is based on the co-occurrence in parallel 
lexico-syntactic patterns, while contextual similarity is based on the discovery of significant 
contexts through contextual pattern mining. Although the approach is domain independent 
and knowledge-poor, automatically collected patterns are domain dependent and they identify 
significant terminological contexts in which terms tend to appear. While lexical and syntactic 
similarities have low coverage, contextual similarity provides a similarity measure that covers 
the majority of semantically linked term pairs, and therefore it can be used for effective 
mining of associations among terms.  
 The presented measures are linearly combined in order to make use of all possible 
information that is mined for a pair of terms. While lexical similarity is typically limited to 
hyponymy relations, contextual and syntactic similarities reveal different types of domain-
specific and functional associations among terms. In order to learn domain-appropriate term 
similarity parameters, we have used an ontology as a means of representing domain-specific 
knowledge needed for tuning the method for a specific domain.  

The results in the domain of biomedicine have shown that the CLS measure proves to be 
a consistent indicator of semantic associations among terms, as similar terms tend to share the 
same “associates”. Our experiments with contextual similarity have demonstrated that terms 
belonging to semantically most related classes have a significantly higher degree of 
contextual similarity than terms belonging to weakly-related classes. This means that the 
contextual measure is coherent with semantic relatedness among terms. The clustering 
experiments have also shown that in 70% of cases terms were reliably grouped into clusters 
with their semantically related counterparts.  

Still, further improvements can be made. Contextual similarity can be enhanced by 
incorporating weights and statistical properties for comparing term contexts. For example, if 
two terms appear exclusively in a certain context, then this fact is more important than an 
“incidental” sharing of a context by other terms. Similarly, different syntactic similarity 
relationships among terms (represented by different patterns) may be weighted: the values of 
syntactic similarity can be parameterised by the number and type of patterns in which two 
terms appear simultaneously. In order to increase the number of concurrent patterns, 
additional patterns (such as patterns describing appositions) can be considered. Lexical 
similarity can be generalised (in particular for single word terms) by combining alternative 
methods for lexical comparison (e.g. approximate string matching).  

We believe that term similarity measures presented here also can be used for term sense 
disambiguation (e.g. by comparison of a contextual pattern corresponding to an ambiguous 
term occurrence with patterns relevant to each of the term senses), which is essential for 
resolving the terminological confusion occurring in many domains. Besides, our future work 
will also focus on term classification and consistent population and update of ontologies. 
However, in this case a specific term relationship identification rather than general term 
similarity is needed to place terms in a hierarchy.  
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Notes 

 
1 Non-terminal categories are given in angle brackets (<TERM>, <N>, <Adj> and <&>, the last 
denoting the following regular expression: (as well as) | and[/or] | or[/and]. Special characters (such as 
(, ), [, ], |, and *) have the usual interpretation in the regular expression notation.  
 
2 Note that we could learn only two parameters (and calculate the third at the end of the learning 
process). However, by learning three parameters we wanted to introduce more options during the 
mutation phase. Note also that any other optimisation or interpolation procedure could be used to learn 
the parameters. 
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