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Abstract 
 
Sophisticated information technologies are needed for effective data acquisition and integration from a 
growing body of the biomedical literature. Successful term identification is key to getting access to the 
stored literature information, as it is the terms (and their relationships) that convey knowledge across 
scientific articles. Due to the complexities of a dynamically changing biomedical terminology, term 
identification has been recognized as the current bottleneck in text mining, and – as a consequence – has 
become an important research topic both in natural language processing and biomedical communities. 
This article overviews state-of-the-art approaches in term identification. The process of identifying terms 
is analysed through three steps: term recognition, term classification and term mapping. For each step, 
main approaches and general trends, along with the major problems, are discussed. By assessing 
previous work in context of the overall term identification process, the review also tries to delineate 
needs for future work in the field.  
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1. Introduction 
 
The current growth of biomedical knowledge has spurred interest in natural language processing (NLP) 
and information technologies such as information retrieval (IR) and information extraction (IE), which 
are helpful to cope with an increasingly large body of biomedical articles. These applications depend on 
term identification as the single most crucial step for accessing information stored in literature. Terms 
(such as names of genes, proteins, gene products, organisms, drugs, chemical compounds, etc.) are the 
means of scientific communication as they are used to identify domain concepts: there is no possibility to 
understand an article without precise identification of terms that are used to communicate the 
knowledge. A term corresponds to an author’s textual representation of a particular concept, and the goal 
of term identification is to recognize the term and capture its underlying meaning. Automating this 
process enables the large-scale processing of the biomedical literature by identifying terms across 
authors and scientific documents. 

The identification of terminology in the biomedical literature is one of the most challenging 
research topics in the last few years both in NLP and biomedical communities. Despite the availability of 
numerous manually corrected and curated terminological resources, several reports claimed that many 
term occurrences would not be identified in text if straightforward dictionary/database look-up was used 
[1-3]. Barriers to successful term identification include extensive lexical variations, which prevent some 
terms of being recognised in free text, term synonymy (when a concept is represented with several 
terms) and term homonymy (when a term has several meanings), which create uncertainties regarding 
the exact term identity. Further, maintenance of terminological resources is complicated by a constantly 
changing terminology. Some terms typically appear in a very short time period, and some of them do not 
last for long. New terms are introduced in the domain vocabulary on a daily basis, and – given the 
number of names introduced around the world – it is practically impossible to have up-to-date 
terminologies that are produced and curated manually. A related problem is the lack of firm naming 
conventions. Guidelines do exist for some types of biomedical entities, but they do not impose 
restrictions to domain experts who are still by no means obliged to use them when coining a new term. 
Consequently, along with “well-formed” terms, ad-hoc names exist, which are problematic for automatic 
term identification systems. For example, there is a gene name “bride of sevenless” (FlyBase [4] ID 
FBgn0000206) with its acronym “boss”, as well as a protein that has been named after a Chinese 
breakfast noodle “yotiao” (Swiss-Prot [5] ID Q99996) [6]. Even if biologists start to use exclusively 
“well-formed” and approved names, there are still a huge number of documents containing “legacy” and 
ad-hoc terms.  

Therefore, dynamic approaches are needed to locate and identify terms in documents. Much of the 
work has been devoted to automatic term recognition (ATR), which is concerned with the tagging of 
textual units that are related to domain-specific concepts. While covering ATR in great detail, this 
review also tries to put ATR in context of the overall task of term identification, which goes beyond term 
recognition to include term classification and term mapping, which are concerned with finding 
appropriate term categories and links to referent data sources, respectively. 

 

Term identification task 
 
We differentiate three main steps for the successful identification of terms from literature: term 
recognition, term classification, and term mapping (see Figure 1). 

Term recognition is a non-trivial task of marking single or several adjacent words that indicate 
the presence of domain concepts. Its main goal is to differentiate between terms and non-terms. As term 
recognition does not further narrow down the specific meaning of a concept, it is often combined with 
term classification (or term categorization), which assigns terms to broad biomedical classes, such as 
genes, proteins or mRNAs. Categorized terms are useful for applications that work with specific term 
classes, such as systems that extract information on protein-protein interactions. Also, term classification 
is important for ontology management, where terms representing novel concepts are automatically 
mapped to specific parts of the ontology. While classification helps to establish some broad notion of the 
nature of a biomedical concept, it is not sufficient for establishing term identity. This is done by term 
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mapping, which links terms to well-defined concepts of referent data sources, such as controlled 
vocabularies or databases. The linking definitely establishes the exact term identity (with respect to the 
referent data source). Mapped terms are annotated with referent identifiers (IDs) that act as keys to 
supplementary information such as preferred and synonymous terms, or sequence information. The 
mapping of terms is essential in any data integration efforts where acquired knowledge on specific 
biomedical concepts is aggregated across different data sources. 
 
 

Term Recognition

Term Classification

Term Mapping  
 
 

Figure 1. Term identification consists of three steps: term recognition, term classification and term mapping 
 

 
To give an example of the term identification steps, consider a hypothetical sentence such as ‘p53 

protein suppresses mdm2 expression’ in an article on human signal transduction. We use term 
recognition to find the term boundaries for the two entities of interest (p53 protein and mdm2).  Then, we 
categorize the first entity (p53 protein) as a protein, while the second entity, mdm2, which does not 
convey any explicit class information, is classified as a gene. Finally, we map the terms to reference 
databases. In the example above, mdm2 could be assigned to a reference gene database, such as 
LocusLink [7], and given a specific database ID (LocusID 4193 for homo sapiens), while p53 protein 
could be linked to a protein repository such as Swiss-Prot (Swiss-Prot ID P04637 for homo sapiens). Of 
the many challenges in identifying mdm2 as the LocusID 4193 entity, consider the need for contextual 
clues to classify it as a gene (as opposed to a protein or other molecular class), and that mapping is 
complicated by several LocusLink entries for mdm2 (for different species).  

Note that each of the three steps of the identification process can be considered a classification 
problem. Term recognition is a general binary classification that arranges lexical units from free text into 
two groups: terms and non-terms. Classification further groups them into broad semantic classes, while 
mapping attempts to determine the exact “knowledge space” that is assigned to a given term by a fine-
grained classification.  

So far, we have discussed the major steps in term identification. It is worthwhile to study 
additional components and underlying resources that are part of the identification process. As can be 
seen in Figure 2, term identification is linked to lexical resources and dictionaries, which are compiled 
from referent databases, such as LocusLink, FlyBase or SwissProt. They assist the term identification 
process at different levels: dictionaries are directly applicable for detecting names in texts, while 
specifically designed lexical resources, such as lists of functional words, are useful for term classification 
(these resources are optional for methods that work with dictionary-independent surface clues). A 
normalization component interfaces between the dictionaries and the term identification steps. It serves 
different purposes, such as taking care of lexical variations in dictionary-based term recognition, or 
selecting a preferred term for term mapping. We will be reviewing different normalization strategies in 
context of term mapping, which heavily depends on the normalization of term variants (see Section 4). 
There is an additional component (not shown in Figure 2) that is often associated with term 
identification: the recognition of acronyms. Acronyms are very common, with many authors defining ad-
hoc abbreviations for biomedical concepts. The understanding of acronyms is facilitated through 
automated compilation of acronym dictionaries, which link acronyms to their expanded forms. We will 
be discussing acronym recognition (and the construction of acronym dictionaries) under the topic of 
term recognition (Section 2). 
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Figure 2: From text to database IDs: term recognition and classification are essential steps to take before 
mapping terms to database IDs. Term normalization is important for recognizing variant terms at various stages 
in the term identification process. Dictionaries and lexical resources are compiled from diverse databases and 
can be used for tasks such as term recognition or mapping. 
 
Although methodologically and conceptually clear, the term identification process does not 

necessarily comply with the sequential order of the steps as depicted in figures 1 and 2. Some of the 
steps can be merged, as in the traditional named entity (NE) recognition task1 where term recognition 
and classification are performed together. Also, if term recognition is based on dictionary/database look-
up, then the corresponding term IDs (and, consequently, the term mapping) can be obtained directly from 
the matching entries (in cases when there is no ambiguity, see Subsection 4.2). Similarly, there are 
classification algorithms that effectively map terms to specific dictionary entries, blurring the distinction 
between classification and mapping. We will nevertheless be using this schematic process flow to group 
and discuss the tremendous amount of published work on term identification. Therefore, the review will 
be featuring a separate section for term recognition, term classification and term mapping. We aim at 
giving a comprehensive overview of general trends, main approaches2 and major problems for each of 
the steps, while giving the reader a chance to understand a specific methodology in the larger context of 
term identification.  

 

2. Term recognition 
 
Term recognition denotes a set of procedures that are used to systematically recognise pertinent terms in 
literature, i.e. to “highlight” lexical units that are related to relevant domain concepts. The performance 
of automatic term recognition (ATR) systems is typically assessed in terms of precision and recall. 
Precision measures the correctness of the lexical units that are suggested as terms, and is usually 
measured as the ratio of correct (“true positives”) and all suggested units (both “true positives” and 

                                                 
1 The NE recognition task has been defined within the Message Understanding Conferences (MUCs). The role of 
NEs and other MUC tasks in biomedical text processing has been discussed by Hirschman and colleagues [2].   
2 In many cases we will provide evaluation of methods as reported by respective authors. However, the 
corresponding testing sets and evaluation strategies are typically different. A direct comparison of the performance 
of different methods is therefore problematic. 
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“false positives”)3. Recall denotes the degree to which concepts in a document are recognised, and is 
usually measured by the ratio of the correctly recognised terms (“true positives”) and all domain-relevant 
terms occurring in a given document (“true positives” and “false negatives”). Although ATR systems 
naturally aim at high precision and high recall, there is a trade off between the two measures: high 
precision can be typically achieved at lower recall points, and vice-versa. The overall performance is 
typically measured by a single score (called the F-measure), which is defined as the harmonic mean of 
the precision and recall values:  
 

recallprecision
recallprecisionmeasureF

+
∗∗= 2-  

 
Since the vast majority of terms are noun phrases (NPs), the main strategy in many ATR systems 

is to extract specific NPs (typically referred to as term candidates) and then to estimate their 
“termhoods” i.e. likelihood of representing domain-specific concepts. Further, many ATR systems 
consider multi-word NPs, as the majority of biomedical terms contain several words (e.g. almost 90% 
biomedical terms in the GENIA4 corpus are compounds [9]).  

In the following subsections we will be discussing different approaches to ATR, starting with 
dictionary-based recognition of biomedical terms. We then examine rule-based (or knowledge 
engineering) systems that mainly use term internal evidence in order to locate potential terms. We also 
consider statistical and machine-learning methods that chiefly rely on external evidence presented 
through surrounding (contextual) information. We further look at hybrid approaches that combine 
different methods and use a mixture of complementary resources.  

As was pointed out in [2], the majority of ATR approaches in the biomedical domain target 
specific entities (mainly gene and protein names), thus integrating term recognition and term 
classification. The main reason for performing both tasks in parallel is that it is more difficult to identify 
features that apply to terms “in general” than features that are specific to individual term classes. Thus, 
the majority of ATR approaches reviewed here perform both term recognition and term classification. 
However, we will also mention general ATR approaches that work without semantic knowledge of the 
domain and that are focused on the term recognition only.  

 

2.1 Dictionary-based approaches 
 
Dictionary-based methods for ATR use existing terminological resources in order to locate term 
occurrences in text. However, as indicated earlier, it has been claimed that many term occurrences could 
not be recognised in text if straightforward dictionary/database look-up is used [1-3]. Hirschman and 
associates [2] presented the problems encountered in an experiment with a simple pattern matching used 
to locate gene references using an extensive list of gene names from FlyBase. They reported on an 
extremely low precision rate (2% for full articles and 7% for abstracts) with recall in the range 31% (for 
abstracts) to 84% (for full articles).5 The main reason for such poor precision was homonymy, as many 
gene names shared their lexical representation with common English words (e.g. gene 
names/abbreviations such as an, by, can and for). Even additional filtering and discarding shorter names 
(which are typically more ambiguous than longer ones) resulted in maximal precision of only 29% (in 
abstracts). In these experiments, the recall errors (i.e. missed gene names) were mostly due to the fact 
that some genes appeared only in tables or figures, which were not processed. However, in general, 
lower recall is typically caused by spelling (or other) variations. For example, Tuason and colleagues [3] 
reported that name variations could account for up to 79% of the missing genes if straightforward string 
                                                 
3 “True positives” refers to lexical units that are correctly recognised as terms, while “false positives” denote non-
term units that are wrongly suggested as terms. Terms that are not recognised are usually referred to as “false 
negatives”. 
4 The GENIA corpus is a manually annotated collection of 2,000 biomedical abstracts [8], in which term 
occurrences are tagged and further classified using the GENIA ontology. The GENIA resources are freely available 
at http://www-tsujii.is.s.u-tokyo.ac.jp/GENIA/. 
5 In this experiment, precision and recall were calculated by considering only genes that have been curated and 
(manually) assigned to the (whole) documents by FlyBase curators. 
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matching was used. In their experiments with mouse gene names (similar to those reported in [2]), the 
overall recall was only 36.2%. They indicated that “punctuation” variation (e.g. bmp-4 and bmp4), using 
different numerals (e.g. syt4 and syt iv) or different transcriptions of Greek letters (e.g. iga and ig alpha), 
as well as word order variations (e.g. integrin alpha 4, alpha4 integrin) were the most frequent causes of 
the gene name recognition failures (see also Section 4, where we discuss term variation and ambiguity in 
the context of term mapping). 

Some ATR approaches combine dictionaries with additional processing to support the term 
recognition process. Krauthammer and colleagues [10] suggested a method based on approximate string 
comparison to recognise gene and protein names and their variations. In their approach, both protein 
dictionaries (compiled from GenBank [11]) and target text are encoded using the “nucleotide” code (a 
four-letter encoding over the {A, C, G, T} alphabet). Then, the BLAST [12, 13] techniques (used for 
alignment of DNA and protein sequences in databases) are applied to the converted text in order to 
identify character sequences that are similar (i.e. may be aligned) to existing gene and protein names 
(also encoded by the corresponding nucleotide codes). In the experiments, the system achieved 78.8% 
recall with the overall precision of 71.7%.  

Tsuruoka and Tsujii [14] suggested a probabilistic generator of spelling variants based on edit-
distance operations (namely substitution, deletion, insertion of characters and digits). Only terms with 
edit distance less or equal to one were considered as spelling variants. The main aims in their approach 
were to support expansion of (term-based) queries in order to boost IR recall (a set of generated variants 
was used instead of a single term to retrieve documents), and to augment existing term dictionaries with 
variants in order to improve dictionary-based recognition of terms in raw corpora. Recently, Tsuruoka 
and Tsujii [15] further described an adjusted method for approximate string matching against a 
dictionary of protein terms. In order to address the peculiarities of biomedical terms, they tuned the cost 
function for edit operations (e.g. substitution of a space with a hyphen (or vice versa) is considerably less 
“expensive” than substitution of any other two different characters). Also, to tackle the problem of false 
positive matches, they additionally used a naïve Bayesian classifier (with contextual and term features) 
trained on protein names found in the GENIA corpus. Using the two-step approach (approximate string 
matching with filtering false positives) they achieved precision of 73.5% at recall of 67.2% (F-measure: 
70.2%). 

 

2.2 Rule-based approaches 
 
Rule-based approaches generally attempt to recover terms by re-establishing associated term formation 
patterns that have been used to coin the terms in question.6 The main approach is to (typically manually) 
develop rules that describe common naming structures for certain term classes using either orthographic 
or lexical clues, or more complex morpho-syntactic features. Also, in many cases, dictionaries of typical 
term constituents (e.g. terminological heads, affixes, specific acronyms) are used to assist in term 
recognition. However, knowledge engineering approaches are known to be extremely time-consuming 
for development, and – since rules are typically very specific – their adjustment to other entities is 
usually difficult.  

A general grammar-based methodology for the recognition of medical terminology was suggested 
by Ananiadou [18], where a four-level ordered morphology was proposed to describe term formation 
patterns. The system used a morphological unification grammar and a lexicon with instances of specific 
affixes, roots and Greek/Latin neoclassical combining forms.  

Gaizauskas and colleagues [1, 19, 20] used a similar approach with a terminological context-free 
grammar for the recognition of protein names in EMPATHIE7 and PASTA8 systems. Their approach is 
based on first determining the lexical and morphological properties of the components of domain terms. 
The morphological analysis is geared to recognize biochemical affixes such as –ase or –in (indicating 

                                                 
6 While the majority of rule-based methods rely on what is typically inside terms, some methods use “negative” 
knowledge (i.e. what is outside terms) in order to recognise term boundaries [16]. For example, Blake and Pratt 
[17] used a stop list (containing common English stop words and some domain specific expressions) to recognise 
boundaries of terms: everything between two boundary words was considered as a candidate term.  
7 See http://www.dcs.shef.ac.uk/nlp/funded/empathie.html 
8 See http://www.dcs.shef.ac.uk/nlp/pasta/ 
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possible enzyme or protein names). Look-up in lexical resources compiled from publicly available 
resource enables the recognition of component categories (such as a protein head) and subcategories 
(such as a protein modifier). A terminology-parsing step is then used to parse the term components and 
combine them into single multi-token units. The necessary grammar rules have been developed semi-
automatically and manually (to capture multi-word entries with no apparent structure). For example, 
names from the protein class are described by the following rule: 
 

protein →   protein_modifier,  protein_head,  numeral 
 
A recent evaluation has shown that the overall precision of the recogniser is 84% at 82% recall for the 
task of recognition of 12 term classes [20]. 

Several systems used simpler pattern-based approaches based on orthographic and lexical 
peculiarities of given term classes. For example, Fukuda and colleagues [21] relied mainly on simple 
lexical patterns and orthographic features for the recognition of protein names. Their system, PROPER 
(PROtein Proper-noun phrase Extracting Rules)9, uses the notion of “core” and “feature” components: 
“core” terms are words that usually bear the core of the meaning, while “feature” terms are keywords 
that describe the function and characteristics of terms (e.g. protein, receptor, etc.). For example, in the 
term “SAP kinase”, the word SAP is a core term, while kinase is a feature term. A set of domain-specific 
filters (which are mainly orthographic) is used for the recognition of “core” terms. Adjacent annotations 
(“core” and  “feature” terms) as well as nouns and/or adjectives between them, are considered part of the 
same “core-block” and concatenated by application of simple extension rules. For a small-scale 
experiment, the authors reported very good results (94.7% precision at 98.8% recall). 

PROPER influenced many other systems. Narayanaswamy and colleagues [22] similarly consider 
other types of biomedical names (in particular chemical and source terms). Typical chemical roots and 
suffixes are used to single out chemicals, while different classes of “feature” terms are used to perform 
more sophisticated classification. In addition, contextual environments are used for further classification 
(e.g. the word expression in a context such as expression of CD40 indicates that CD40 is a protein/gene). 
Franzen and colleagues [23] developed Yapex (Yet Another Protein Extractor)10 by adding data sources 
(e.g. “core” terms compiled from Swiss-Prot), additional heuristic lexical filters and results of syntactic 
parsing (in order to enhance the detection of name boundaries). They reported better performance 
compared to PROPER (for strict matching, Yapex’s F-score was 67.1% compared to PROPER’s 40.7%, 
while the F-scores were similar in case of sloppy matching). In order to further improve precision, Hou 
and Chen [24] considered additional filtering of candidates suggested by Yapex using contextual 
information based on most relevant collocations that appeared with protein names in a training corpus.  

Hobbs [25] and Thomas and colleagues [26] customised an existing general NE recogniser (used 
in general-purpose IE engines Highlight and FASTUS [27]) for detection of protein names. Recognition 
is carried out in several phrases using a cascade of finite-state transducers, which recognize complex 
units (such as 3,4-dehydroproline or γ-glutamyl proline) and “basic phrases” that are extended to the 
surrounding words using (domain-independent) rules for the construction of complex noun groups.  

 

2.3 Machine-learning and statistical approaches  
 
A variety of machine-learning (ML) and statistical techniques are used for ATR. While statistical 
approaches mainly address the recognition of general terms (i.e. keywords [28]), ML-systems are usually 
designed for a specific class of entities and, thus, integrate term recognition and term classification. ML 
systems use training data to “learn” features useful for term recognition and classification, but the 
existence of reliable training resources is one of the main problems as they are not widely available.11 
                                                 
9 Available at: http://www.hgc.ims.u-tokyo.ac.jp/service/tooldoc/KeX/intro.html 
10 A demo is available at http://www.sics.se/humle/projects/prothalt/yapex.cgi 
11 Few terminologically tagged biomedical corpora are available (e.g. the GENIA corpus), since it is very time-
consuming to produce them manually. Thus, one of the major challenges is the automated creation of tagged 
corpora that can be used for machine learning. For example, Hatzivassiloglou and colleagues [29] used the context 
of “known” occurrences of genes, proteins, and mRNAs as training examples, where “known” occurrences were 
explicitly disambiguated in text by specifying their class (e.g. the SB2 gene clearly means that this occurrence of 
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Apart from that, the main challenge is to select a set of discriminating features that can be used for 
accurate recognition (and classification) of term instances. Another challenge is detection of term 
boundaries, which are the most difficult to “learn”. 

Several supervised ML-methods are exploited for ATR. For example, Collier and colleagues [33] 
used Hidden Markov models (HMM) and specific orthographic features (e.g. “consisting of letter and 
digits”, “having initial capital letter”, etc.) for discovering terms (belonging to a set of ten classes). Each 
term candidate was assigned a class of the most similar term from the training set, with respect to the 
orthographic similarity. To estimate the transition probabilities, maximum-likelihood estimates based on 
counts on the training data (the GENIA corpus) were used. Results depended on the quality of training 
resources: for example, for the protein class (which was the most frequent in the training set), the results 
were encouraging (F-score of 75.9%), while, on the other hand, instances of RNAs were very rare, so it 
was difficult to learn classification features. Similar results (the F-measure of 75% for the recognition of 
Drosophila gene names) have been reported by Morgan and colleagues [32], who used HMMs based on 
local context and simple orthographic and case variations. In addition to orthographic features, Shen and 
associates [34] experimented with prefix/suffix information, POS (part-of-speech) tags and noun heads 
as features. They achieved F-scores of 16.7% to 80% depending on the class (overall F-score 66.1%; the 
protein class F-score was 70.8%), and reported that POS tags (obtained by a tagger trained on the 
biomedical domain) proved to be among the most useful features. 

Several authors used support vector machines (SVMs) for the recognition of named entities. 
Kazama and colleagues [35] trained multi-class SVMs on the GENIA corpus. The corpus has been 
annotated with so-called B-I-O tags: B-tags denote words that are at the beginning of a term, I-tags such 
that are inside a term, while O-tags are used for words outside terms. The tags are complemented with 
the appropriate class information, i.e., a B-PROTEIN-tag denotes a word that is at the beginning of a 
protein name. The method aims at predicting these composite tags based on position-dependent features 
(such as POS, prefix und suffix features), as well as a word cache (captures similarities of patterns with a 
common keyword) and HMM state features in order to address the data sparseness problem. In general, 
an F-score of 50% was achieved. They reported that considering preceding class and suffix information 
was helpful, while features related to POS and prefix did not have a positive influence across all 
experiments conducted. Several authors experimented with additional features for SVM-based term 
recognition and classification. Takeuchi and Collier [36] considered head-noun features, and reported 
that their combination with orthographic features gave better performance (F-score of 74.2% for ten 
classes). Yamamoto and associates [37] combined boundary features (based on morpheme-based 
tokenization) with morpho-lexical (POS tags, stems), “biomedical” (whether a given word exists in a 
compiled database of biomedical resources) and syntactic features (head morpheme information). They 
reported that, individually, “biomedical” features were crucial for recognition of protein names. Lee and 
colleagues [38], however, suggested strict separation of the recognition and classification steps in the 
SVM-based NE recognition. For term recognition, they used “standard” features (orthographic, prefix 
and suffix information) coupled with a simple dictionary-based refinement of boundaries of the selected 
candidates (by examining the adjacent words – if they appeared in the dictionary, they were included as 
part of the term). On the other hand, a set of class-specific “functional” words and contextual 
information were combined as features in the classification phase. They reported that this two-phase 
model showed better performance compared to the “standard” approach, mainly because discriminative 
features were selected for each subtask separately. 
 

2.4 Hybrid approaches  
 
Many approaches combine different methods (typically rule and statistically-based) and various 
resources (pre-compiled lists of specific terms, words, affixes, etc.) for the term recognition task.  

Tanabe and Wilbur [39] presented a protein and gene name tagger, ABGENE, which has been 
trained on Medline abstracts by adapting Brill’s POS tagger [40]. Apart from a set of transformation 
                                                                                                                                                            
SB2 is a gene occurrence). Craven and Kumlien [30], on the other hand, collected a set of instances of sub-cellular 
locations of proteins from the Yeast Protein Database [31] and then identified sentences from the associated 
PubMed citations in order to get an annotated corpora. A similar approach has been suggested in [32] by using lists 
of curated genes from FlyBase and the articles associated with them. 
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rules for the recognition of single-word gene and protein names, additional filtering and “recovering” of 
results is performed in order to improve both precision and recall. More precisely, false positive 
gene/protein names assigned by the tagger are “filtered-out” by an extensive list of precompiled general 
(i.e. non-gene and non-protein) biomedical terms and non-biological terms (obtained by comparing word 
frequencies in Medline with a general language corpus). On the other hand, false negative tags are 
“recovered” (i.e. tagged as genes/proteins) by an extensive list of proteins and genes (compiled from the 
LocusLink database and the Gene Ontology (GO) [41]). Also, context words are consulted: if a word is 
surrounded by “good” context words, it is tagged as a protein/gene. “Good” context words have been 
generated by a probabilistic algorithm by assigning Bayesian weights to all non-gene names that co-
occurred with known names in the training set. Compound names are also extracted by relying on the 
combination of frequently occurring components in known multi-word gene names and a set of regular 
expressions. Overall, ABGENE achieved precision in the range of 60% to 90%. 

Similarly, Proux and colleagues [42] used a cascade of finite-state lexical tools to recognise 
single-word gene names.12 Their method is based on a morphological POS tagger, which uses a special 
tag (“guessed”) for tokens that cannot be matched with classical word transducers. Most gene names are 
tagged with the “guessed” tag, and eventually confirmed through contextual analysis (e.g. the presence 
of a word gene next to a candidate token validates its “status” as a gene-name). Special post-processing 
steps are necessary to recover or remove erroneously tagged tokens, including the use of a dictionary of 
general expressions from biology. On a small testing corpus (750 sentences obtained from the FlyBase 
database) they reported precision of 91.4% at the recall point of 94.4%, while when applied on a larger 
corpus (25,000 abstracts) the system achieved precision of 70%. 

Rindflesch and colleagues [43] reported on ARBITER (Assess and Retrieve BInding TERms), 
which combined several approaches and resources to recognise word sequences that corresponded to 
binding terms. The approach selects NPs as potential “binding” terms if the NPs map to the UMLS 
Metathesaurus [44] or GenBank, exhibit “abnormal” morphological characteristics (compared to regular 
English terms) or contain heads, which are included in a constrained list of words (such as ligand or 
subunit). Similarly to PROPER’s extension rules (see Subsection 2.2), simple binding terms are joined 
into complex expressions under specific conditions (e.g. prepositional modification, appositival 
complementation, etc). Overall, the reported precision was 79% at 72% recall. A similar approach has 
been implemented for the recognition of gene, cell and drug names in the EDGAR system [45], where 
characteristic words (such as cell, clone, expression) occurring immediately next to target names are 
used to help in recognition and classification. 

Finally, while the majority of methods address a specific type of entities, a method called C/NC-
value, developed by Frantzi and colleagues [46] recognises general terms. It has been used to recognise 
terminology in many biomedical sub-domains (e.g. in the domain of nuclear receptors [47] or from yeast 
corpora [48]). Term candidates are suggested by a set of morpho-syntactic filters, while their termhoods 
are estimated by a corpus-based statistical measure. The measure amalgamates four numerical 
characteristic of a candidate term, namely the frequency of occurrence, the frequency of occurrence as a 
substring of other candidate terms (in order to tackle nested terms), the number of candidate terms 
containing the given candidate term as a substring, and the number of words contained in the candidate 
term. The selected list of term candidates is further refined by taking into account the context of 
candidate terms. Context factors are assigned to candidate terms according to their co-occurrence with 
top-ranked context words. Experiments performed on a collection of 2,082 MEDLINE abstracts have 
shown the precision of 91-98% for top ranked terms recognised by the C/NC-value method [47]. The 
method was further augmented by the conflation of different variants of term candidates (e.g. unification 
of orthographic and inflectional variants, as well as acronyms) prior to the calculation of termhoods [49]. 
The integration of variants into the ATR process significantly improved both precision and recall of the 
baseline C/NC-value method [50].  

 

                                                 
12 Proux and colleagues claimed that only a small percentage of gene names were multi-word units. However, in 
training/testing corpora described in [23] almost half of all gene/protein names were compounds. 
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2.5 Acronym recognition 
 
It is well known that biomedical terms often appear in shortened or abbreviated forms. With many 
scientific articles defining ad-hoc abbreviations, thousands of newly coined acronyms appear yearly in 
the biomedical literature [51, 52]. Therefore, the ability to “understand” acronyms is obviously critical 
for an NLP system, so the recognition and linking of acronyms and their expanded forms (EFs) is an 
essential part of term identification. Although there are many existing acronym repositories in the 
biomedical field [52, 53], it has been reported that such resources cover only parts of the acronyms that 
appear in documents [54].  

The discrepancy between curated acronym resources and the wealth of acronyms defined in 
biomedical articles fostered the development of several acronym recognition systems. In order to locate 
potential acronym definitions in text, the majority of approaches use pattern matching based on 
“parenthetical forms” (i.e. occurrences of acronyms within parentheses). Then, an optimal definition 
candidate string is selected and the candidate EF is analysed with the aim of discovering the relation 
between a given acronym and the expanded candidate EF (or its substring).  

One of the first attempts to compile acronyms from literature was by Yoshida and colleagues [55]. 
The system, called PNAD-CSS (Protein Name Abbreviation Dictionary - Construction Support System), 
aimed at the recognition of protein acronyms, and the PROPER system [21] was used for spotting 
(expanded) target protein names in text. Apart from initial letters of words, they considered the initial 
characters of syllables in order to match an acronym to a protein name. They reported precision of 98.9% 
and recall of 95.6%.   

Yu and colleagues [54] designed the rules for the recognition of gene/protein symbols and the 
corresponding full names after the examination of published gene/protein nomenclatures. They 
combined morphological cues, special “functional” keywords and positional information. Standard 
pattern matching rules have been also adapted by two special modifications: numbers and special 
characters are ignored for mapping short forms to full names, and the identification of special 
abbreviations and the corresponding forms (such as Y for tyrosine) has been included. The manual 
evaluation has shown that the approach achieved 93% precision and 73% recall.  

Similar but more general rule-based methods have been also suggested. Liu and colleagues [56] 
reported on a method (called PW3) for matching 3-letters acronyms (including some chemical 
acronyms). Nenadic and associates [49] introduced a simple rule-based method for discovering and 
linking acronyms with their EFs from raw text. Matching patterns were modelled by a manually defined 
grammar that defined common “rules” for coining new acronyms (including using initial letters from 
affixes used in the corresponding EFs). Also, extracted acronym/EF pairs were grouped so that acronyms 
sharing “normalised” EFs were conflated by unifying orthographic, structural and lexical variations. Yu 
and colleagues [57] presented a pattern matching approach (called AbbRE) that was based on a set of 
general rules for mapping an abbreviation to its EF. AbbRE applies the rules in a sequence, and prefers a 
shorter EF for an extracted acronym. They reported an average precision of 95% and recall of 70%. 
Schwartz and Hearst [58] suggested a general algorithm for the extraction of the shortest corresponding 
EF for a given acronym. They used only few common constraints, such as the first character of an 
acronym has to be the first character of the first word in the corresponding EF; EF should be longer than 
the corresponding acronym; EF should not contain the candidate acronym itself. In the experiments on 
the MEDSTRACT corpus13, they accomplished 99% precision at 84% recall, while on a larger test corpus 
the method achieved recall of 82% at precision of 95%.  

One of the main challenges of the acronym acquisition task is to select an optimal EF: the majority 
of errors in raw-text based methods are related to the size of the window used for searching for the 
potential EF. Therefore, additional text pre-processing was used in order to improve the recognition of 
EFs. For example, Pustejovsky and colleagues [59] based their approach on results of shallow parsing: 
the size of the window is determined by morpho-syntactic properties and only NPs are considered as 
candidate EFs. The system, called ACROMED, achieved precision of 98.3% at 72% recall on the 
MEDSTRACT corpus. 

                                                 
13 The MEDSTRACT testing corpus (http://www.medstract.org/) contains 100 Medline abstracts with 168 manually 
marked occurrences of acronyms [59].   
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Finally, Chang and colleagues [52] presented a supervised ML approach to acronym recognition 
that used a binary logistic regression classifier. Feature vectors used for recognition were based on three 
types of features: features describing acronym patterns (e.g. percentage of lower case letters), features 
describing how the acronym letters are linked to EFs (e.g. percentages of letters aligned at the beginning 
of words, on syllable boundaries, etc.), and features related to the alignment (e.g. number of words from 
an EF used to match letters in a given acronym, the average number of matched characters per word, 
etc.). The method was also evaluated against the MEDSTRACT corpus: the system achieved 95% 
precision at 75% recall. This method was used to automatically scan all MEDLINE abstracts and to 
compile an acronym database14.  
 

3. Term classification  
 
We have been discussing term recognition as a method to locate lexical units that are related to domain 
concepts. Term recognition does not further specify the meaning of a term; it is the role of term 
classification to pinpoint the specific type of a domain concept (such as a gene, protein or mRNA) that is 
described by the term. In other words, term classification gives a first clue on the identity of a term, 
which is an important step towards final term identification. For example, classification may help to 
select a specific resource useful for term mapping.15 In technical terms, the classification task is to 
disambiguate between the possible (broader) senses of terms (if more than one), which is known as term 
sense disambiguation.  

Many term classification systems use functional words, such as receptor, factor or radical for 
assigning term categories [20, 21, 23, 60]. However, more often than not, terms do not contain any 
explicit term category information. In such situation, statistical disambiguation may be warranted. For 
example, Nobata and colleagues [61] combined the use of functional words with statistical methods for 
term classification. In their experiment, they compared a naïve Bayesian method with a decision tree 
approach for classifying terms into different molecular classes such as protein, DNA and RNA. In the 
former, conditional probabilities of word w being assigned to class c have been learnt from category-
specific as well as background word lists, the former being compiled from resources such as SwissProt 
and GenBank, the latter from a large collection of Medline abstracts. The words within a term were then 
used to determine the class probability. The presence of specific head nouns (acting as functional words) 
took precedence when determining the term class. The method was tested on 100 manually tagged 
Medline abstracts (the tag set was derived from the GENIA ontology). The method based on decision-
trees relied on three kinds of feature sets (POS information, character type information and category-
specific word lists) and was cross-validated on the same corpus as above. The naïve Bayesian method 
(F-score 65.8%) showed lower performance than the decision tree approach (F-score between 87.7% and 
90.1%) for classifying terms (assuming perfect term recognition – which has been done manually). They 
also attempted term classification with automatic term recognition, scoring significantly lower F-scores 
for the classification task. 

Unlike the previous method, which relies on internal evidence for classification, most statistical 
disambiguation approaches are based on information flanking an ambiguous term. For example, 
Hatzivassiloglou and associates [29] described a statistical approach for disambiguating between 
proteins, genes, and mRNAs. They experimented with different machine learning techniques (naïve 
Bayesian classification, decision trees and inductive learning) for term disambiguation, and evaluated 
several types of classification features (such as words that appeared near a term, positional, 
morphological, distributional and shallow syntactic information). They found that using word positional 
information lowered accuracy (because of data sparseness), while POS information helped the overall 
accuracy, but only modestly (less than 1%). Overall, their approach showed accuracy between 69.4% 
and 85% for a two-way classification task (gene/protein) and between 65.9% and 78.1% for a three-way 
classification task (gene/protein/mRNA). These results compare favourably to a human expert inter-
annotator agreement rate of 77.6% when performing the same classification task manually.  

                                                 
14 Available at http://abbreviation.stanford.edu 
15 In the example presented in the introduction, we classified mdm2, in ‘p53 protein suppresses mdm2 expression’, 
as a gene, and consequently we selected a gene resource (i.e. LocusLink) for the final term identification.  
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Torii and Vijay-Shanker [62] similarly used an unsupervised bootstrapping method (based on 
decision lists) for learning contextual environments for a given set of classes (namely proteins, chemical 
names and sources). Further, Torii and colleagues [60] experimented with term internal (functional 
words and suffixes) and external (words occurring nearby) sources for the classification of molecular 
names as chemicals, proteins and other classes. They also used a term similarity measure (based on 
lexical resemblance among terms) to measure the distance to previously classified entities. The similarity 
measure achieved high precision and recall (93% and 84%), and outperformed methods based on internal 
and external features.  

Spasic and associates [63] looked at term classification for the task of ontology management, 
where it is of interest to automatically expand ontologies with newly discovered terms. They used 
genetic algorithms to refine verb selectional preferences and to assign classes associated with domain 
verbs. The class of a novel term is chosen based on co-occurrence with a domain verb, as well as a 
similarity measure to known terms with established term-class relationships. In an evaluation study 
involving 28 different classes (a subtree of the UMLS semantic network), the approach achieved a mean 
classification precision of 64.2 % (recall was 49.9 %).  

Raychaudhuri and colleagues [64] described annotation of S. cerevisiae gene names with Gene 
Ontology (GO) codes using a word-based maximum entropy measure. The measure acts as a classifier 
for journal abstracts, which enables GO mapping for (all) genes that appear in those abstracts. Nenadic 
and associates [48] further explored how different text-based features influenced the annotation 
performance using SVMs.  The features included document identifiers (i.e. gene-gene co-occurrence 
within the same document), single words and automatically extracted terms. The experiment showed that 
linguistic pre-processing of single words (such as lemmatization and stemming) did not significantly 
boost the performance. Terms (acting as semantic features) improved the performance at low recall 
points, while document identifiers achieved superior results compared to the other features.  

 

4. Term mapping  
 
Term mapping is typically the final step in the term identification process. Its aim is to map a term 
occurrence to an entry in a referent data source, annotating the term with a referent ID. Term mapping 
faces two main problems: the extensive variability of lexical term representations, and the problem of 
term ambiguity with respect to mapping into a data source. The former is linked to the fact that 
biomedical terms often appear in different surface forms. For example, different orthographic variations 
(e.g. NF kappa B, NF kappaB, NF-kappa B), inflectional and morphological variants (e.g. transcription 
intermediary factor-2, transcriptional intermediate factor 2), structural variations (e.g. clones of human, 
human clones) and lexical alternatives (e.g. hepatic microsomes, liver microsomes) are very frequent. 
Since many of such variants are missing from domain resources, it is typically difficult to link term 
occurrences to referent entries directly (i.e. forms appearing in documents differ from those stored in 
databases; see [2, 3, 15, 57]). On the other hand, we often encounter term ambiguity with respect to a 
one-to-many relationship between a term and entries in referent data sources. The ambiguity complicates 
the mapping of a term, as it is typically not trivial to select an appropriate entry. For example, the term 
CAT, even if previously classified as a protein, has many potential candidate entries in the Swiss-Prot 
protein database (such as catalase, carnitine o-acetyltransferase, as well as different CAT entries for 
different species). Tuason and colleagues [3] discuss further issues that are relevant for term mapping. 
First, there is high ambiguity of biomedical terms with common English words (see also [2]). It seems 
necessary, therefore, to include a disambiguation step to identify common English words early in the 
term identification pipeline. Second, terms should be linked to the appropriate species before mapping.16  

In this Section we will briefly review how research in term normalization and disambiguation tries to 
overcome the major challenges in term mapping. We start by discussing strategies that deal with the 
problem of term variability, and then present approaches to term disambiguation.  

 

                                                 
16 Seewald [65] recently discussed the use of several ML classifiers (naïve Bayesian, SVM, and others) to learn 
species domains (kingdoms) from Medline abstracts. 
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4.1 Handling term variability  
 
We use a broad definition of variability that includes simple variations such as differences in spelling, as 
well as more complex variation (commonly called synonymy). Recently, there has been work towards a 
better understanding of the variability issues with regard to biomedical names. For example, Cohen and 
colleagues [66] have written about variability and normalization of gene and protein names. They 
differentiate between contrastive features, “which can be used to distinguish two samples of natural 
language with different meaning”, and noncontrastive variability in the form of spelling variations in 
synonymous names. They suggested heuristics that allowed the mapping (i.e. conflation) of 
(synonymous) variants of gene and protein names to a canonical referent. These heuristics included 
equivalence of vowel sequences, optionality of hyphens and parenthesized material, and case 
insensitivity. On the other hand, they found “edge effects” (for example, a number at the last position of 
a protein name) to be contrastive, i.e. changing the meaning (i.e. identity) of a term.  

Other approaches to conflation of terminological variants have been also suggested (e.g. [15, 67]). 
For example, Jacquemin and Tzoukermann [68] discussed conflation of multiword terms by combining 
stemming and terminological look-up. Stemming was used to reduce words so that conceptually and 
linguistically related words were normalised to the same stem (thus resolving some orthographic and 
morphological variations), while a terminological thesaurus might be used for spotting synonyms and 
linking lexical variants.  

The MetaMap program [69], which maps noun phrases identified by the SPECIALIST minimal 
commitment parser to UMLS Metathesaurus concepts, demonstrates the use of term variation in the 
process of mapping terms into a domain resource. MetaMap uses a multi-level mapping strategy, which 
first analyses a target term to “generate” a multitude of variants, such as acronyms, synonyms and 
inflectional variants. Each of these derivations of the original term is then mapped against concept names 
in the Metathesaurus. The method compares the “strength” of the mapping for each term variant, 
ordering possible mapping candidates. MetaMap has been used in several research projects that 
depended on mapping to the UMLS Metathesaurus, such as hierarchical indexing, data mining in clinical 
reports and automated indexing of documents.17  

Referent data sources often do not contain the complete set of synonyms of a given concept, 
complicating the mapping process. There has been work towards automatically finding term synonyms 
in documents. This work (as well as work on acronyms recognition, reviewed in Subsection 2.5) is 
useful for extending the scope of biomedical dictionaries, which boosts the chance of successfully 
mapping synonyms. As an example of such work, Yu and Agichtein [70] experimented with four 
different approaches (namely unsupervised, partially-supervised, and supervised ML approaches, as well 
as a rule-based system) for the extraction of gene and protein synonyms that occurred within the same 
sentence. The unsupervised ML approach was based on comparison of mutual information of synonym 
candidates with respect to other words in their neighbouring contexts, while the partially-supervised, 
bootstrap method used a set of seed synonym occurrences to learn “contexts” that indicated occurrence 
of synonyms (e.g. fragments such as <GENE> also known as <GENE>). The supervised SVM-based 
method used the same seed occurrences to learn a classifier that classified each textual context 
surrounding a pair of gene/protein names as “positive” or “negative” with respect to synonymy. Finally, 
the rule-based system (called GPE) was based on a set of manually defined lexical extraction patterns 
that indicated typical contexts used to express synonymy. While GPE had high precision with low recall, 
all ML-approaches traded off precision for higher recall (for example, the precision of 7% at the recall 
point of 72%). Still, by combining ML-approaches with GPE, the performance significantly improved 
over all individual approaches. 

 

4.2 Handling term ambiguity 
 
The second major problem with term mapping is related to the problem of term ambiguity with respect 
to referent data sources. Broad classification (reviewed in Section 3) can resolve much of term 
ambiguity, but is useless in situations where a term has different meanings within a specific term class. 

                                                 
17 MetaMap is available online as MetaMap Transfer (MMTx), at http://mmtx.nlm.nih.gov/ 
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For example, broad classification may help to disambiguate between CAT as a protein, animal or medical 
device, but it is ineffective in situations where CAT can be mapped to several different protein entries in 
a protein data source. In such situations, specific classification on the level of dictionaries is useful. For 
example, the work by Liu and associates [71] aimed to disambiguate terms associated with several 
entries in the UMLS Metathesaurus. Given a term, the method first identifies a set of corresponding 
UMLS concept identifiers (CUIs), representing the different term senses. Using the UMLS information 
on relationships between concepts, the method then identifies other UMLS concepts (called the relative 
CUI set) that have relationships with the original sets of concepts. Using unambiguous concept names of 
the relative CUI set, the method builds a classifier for each sense of the term. In an evaluation study, the 
authors experimented with 35 abbreviations with multiple senses in UMLS. The overall precision was 
96.8% at 50.6% recall. 

Other approaches have also been suggested for mapping ambiguous acronym occurrences18 to 
their referent entries.  Pustejovsky and colleagues [59] used a simple word-based vector space model for 
disambiguation of acronyms with multiple meanings (the POLYFIND system). After collecting a set of 
abstracts for each meaning, a new abstract (with an occurrence of the ambiguous acronym) is compared 
to each of the corresponding “meaning” sets by using the standard tf*idf weighting and the cosine 
similarity. A set with the highest similarity is used to assign the interpretation to all occurrences in the 
new abstract. This approach resulted in 97.6% accuracy. Pakhomov [72] used a maximum-entropy 
classifier on the sentence level by using only the [-2, +2] context window approach to find a correct 
interpretation of a given acronym. Since he used a set of clinical notes for experiments, he also 
experimented with features based on the headings (titles) of the sections in which ambiguous acronyms 
appeared. He reported that there were no significant differences between the two approaches: precision 
was in average almost 90%. These results suggest that approaches to acronym sense disambiguation – 
even without any sophisticated information – are promising, but it is obvious that the training resources 
are needed.  

 

5. Conclusions and challenges 
 
Term identification is crucial for the automated processing of the biomedical literature [2, 3, 73]. The 
importance of the topic has triggered fascinating research on the problems of recognizing, classifying 
and mapping term occurrences in biomedical texts. From the first descriptions of the term recognition 
problem (see for example [21]) to the latest published research, there has been a steady improvement of 
the understanding of the underlying issues and challenges.  

Term recognition systems have been developed for many classes of biomedical entities, in 
particular for gene and protein names. They are based either on internal characteristics of specific classes 
or on external clues that can support the recognition of word sequences that represent specific domain 
concepts. Different types of features are used, such as orthographic (capital letters, digits, Greek letters) 
and morphological clues (specific affixes, POS tags), or syntactic information from shallow parsing. 
Also, different statistical measures are suggested for “promoting” term candidates into terms. 
Discovering acronyms and uncovering their “meaning” is also an essential part of term recognition, since 
acronyms are very frequent in the biomedical domain. Precision of ATR methods is typically in the 70-
90% range, while recall, in the best cases, is around 70%. Still, it is not possible to thoroughly compare 
different systems as they have different targets, and common test collections are still rare [2]. Some 
attempts have been made only recently to organise joint evaluation schemes (e.g. the BIOCREATIVE 
initiative19).  

Although tremendous work has been done on ATR, some challenges still need additional research. 
For example, more accurate recognition of term boundaries is needed, as the majority of existing systems 
address only maximally long term candidates (which may include some insignificant modifiers, thus 
                                                 
18 Chang and colleagues [52] claimed that more than fifth of all acronyms extracted from Medline were ambiguous. 
19 BIOCREATIVE (Critical Assessment of Information Extraction systems in Biology) was organized for the first 
time as a challenge cup in 2003, in which one of the subtasks was related to protein/gene name recognition and 
identification (in the same, shared set of documents). The evaluation showed that the best methods achieved F-
scores of 80%, with both the best precision and recall values of around 80%. For details see 
http://www.mitre.org/public/biocreative/.  
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complicating subsequent term mapping). Further, recognition of internal term structure and nested 
(embedded) sub-terms is essential, in particular since nested terms are common in the biomedical 
domain20. For example, when recognising the term leukaemic T cell line Kit225, it would be useful to 
have all its nested terms (cell line, T cell line, Kit225 and leukaemic T cell line) recognised and 
highlighted in text. Such information may prove valuable in the subsequent term identification process. 
Further challenges include handling of both term variation that affect term constituents (e.g. orthographic 
and morphological variants) and term structure (e.g. recognition of terms that are “encoded” in term 
coordinations, like terms estrogen receptor and progesterone receptor in the coordination estrogen and 
progesterone receptors [9]). Finally, recognition of other classes of terms (not only proteins, genes and 
chemical compounds) is vital for successful mining of the biomedical literature. 

The recognition of lexical units that correspond to domain concepts is not the ultimate goal of 
term identification: assigning terms to broader biomedical classes and/or to referent databases is an 
additional challenge. However, the variation and inconsistencies in surface expressions of terms as well 
as their ambiguity create a major problem for term classification and mapping. Term classification is 
typically based on either functional words that are embedded in concept names, or on contextual 
characteristics of term occurrences. On the other hand, term mapping to referent databases typically 
needs lexical and morphological “normalisation” for matching to existing databases entries, as well as 
disambiguation for ambiguous terms.  

Although the term identification process can be conceptually and methodologically presented 
through the three steps (recognition, classification and mapping), in many cases practical solutions 
merge some of these tasks, blurring the boundaries between them. For example, term recognition and 
classification are often performed in a single step, where the same features are used to single out term 
candidates and to categorise them. Also, some researchers have pointed to the dual role of dictionary-
based term recognition approaches, which effectively map recognized (unambiguous) terms to the 
respective dictionary entries [10, 15]. Nevertheless, some authors stress the advantages of tackling each 
step individually, pointing at the different information sources needed to accomplish each subtask [38, 
60].21 It is an open issue whether a clear separation into single steps would improve term identification. 
Obviously, if separated, it is easier to modularise the term identification task, so that different solutions 
can be used for each specific problem. For example, if a general, class-independent term recognition 
method is used, then – in order to successfully categorize entities of a new term class of interest – 
researchers would have to concentrate only on the design of a classification method. Further, separation 
would allow for the selection of more relevant and more discriminative features for each of the subtasks. 

Also, it seems clear that accurate classification (done prior to term mapping) can be helpful for 
more accurate linking of ambiguous terms to referent sources. For example, the author of MetaMap 
discusses the inclusion of statistical disambiguation to resolve situations where terms map to several 
different concepts in the UMLS [69]. This is a question of practicality: it seems difficult to build a 
classifier for each ambiguous term in a referent database. The solution might be a step-wise approach, 
where a broad classification of terms (for example according to UMLS semantic types) maps most of the 
term occurrences, and where the remaining terms are mapped by individual term classifiers.  

Further issues – especially in term mapping – still wait to be addressed. For example, many 
recognised terms do not appear in referent resources, although highly (conceptually) related entries can 
be located. Krauthammer and associates [10] have speculated that mapping of such terms can be done to 
parent concepts of terms. For example, given a database entry interleukin-2, it may be possible to map a 
term such as interleukin-3, which is not in the database and is contrastive to interleukin-2, to a parent 
concept of both terms, such as interleukin. This would necessitate the inclusion (or generation) of parent 
terms in the database, as is the case in most ontologies. Blaschke and Valencia [73] point to a related 
problem of terms that refer to families or group of proteins. Without a corresponding entry in a reference 
database, such family terms cannot be mapped. As an example, consider the (family) name MAP kinase, 
which can map to both Erk1 and Erk2 (in humans). The mapping can be further complicated by the fact 
that it is unclear whether an author refers to the family or either of the entities. Furthermore, in some 
cases, even a narrow context may not be always sufficient to disambiguate a term (e.g. when a protein 

                                                 
20 A recent study by Ogren and colleagues [74] reported that, for example, two thirds of GO-ontology terms 
contained another GO-term as a proper substring. 
21 For example, Lee and colleagues [38] reported that POS information was useful for the term recognition task, 
while it was not effective for classification. 
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name is shared among different species), and wider context (e.g. a whole article) may need to be 
analysed before terms can be mapped.  

Apart from the identification of each and every term occurrence in text, a further challenge is to 
select the most representative or the most important terms (and entities) that are “discussed” in a given 
document. This challenge concerns the problems of sophisticated document indexing for improving the 
quality of information retrieval, which is crucial for database curation22 and other time-consuming 
annotation tasks. For this, methods that measure the representativeness of the recognised (and identified) 
names (e.g. [75], [46]) are preferred.  

Since biomedical literature is expanding so dynamically, the demand from the user community is 
directed towards practical and useful systems that are able to identify and link relevant “entities” in 
literature to databases. Relying exclusively on existing controlled vocabularies to identify terminology in 
text suffers from both low recall and low precision, as such resources are insufficient for automatic 
terminology mining. Having in mind the pace of the development in the domain and the rate of coinage 
of new terms, it is unlikely to expect that any terminology standardisation will occur in near future. 
Therefore, automatic term identification tools will be for long valuable assets for literature mining and 
knowledge integration in the biomedical domain. 
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