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Abstract

We describe here the JNLPBA shared task of
bio-entity recognition using an extended version
of the GENIA version 3 named entity corpus of
MEDLINE abstracts. We provide background
information on the task and present a general
discussion of the approaches taken by partici-
pating systems.

1 Introduction

Bio-entity recognition aims to identify and clas-
sify technical terms in the domain of molecu-
lar biology that correspond to instances of con-
cepts that are of interest to biologists. Exam-
ples of such entities include the names of pro-
teins, genes and their locations of activity such
as cells or organism names as shown in Figure 1.

Entity recognition is a core component tech-
nology in several higher level information access
tasks such as information extraction (template
filling), summarization and question answering.
These tasks aim to help users find structure in
unstructured text data and aid in finding rele-
vant factual information. This is becoming in-
creasingly important with the massive increase
in reported results due to high throughput ex-
perimental methods.

Bio-entity recognition by computers remains
a significantly challenging task. Despite good
progress in newswire entity recognition (e.g.
(MUC, 1995; Tjong Kim Sang and De Meul-
der, 2003)) that has led to ‘near human’ levels
of performance, measured in the high 90s for F-
score (van Rijsbergen, 1979), similar methods
have not performed so well in the bio-domain
leaving an accuracy gap of some 30 points of F-
score. Challenges occur for example due to am-
biguity in the left boundary of entities caused
by descriptive naming, shortened forms due to
abbreviation and aliasing, the difficulty of creat-
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We have shown that <cons
sem=”G#protein”>interleukin-1</cons>
(<cons sem=”G#protein”>IL-1</cons>)
and <cons sem=”G#protein”>IL-2</cons>
control <cons sem=”G#DNA”>IL-2 receptor
alpha (IL-2R alpha) gene</cons> transcription
in <cons sem=”G#cell line”>CD4-CD8-
murine T lymphocyte precursors</cons>.

Figure 1: Example MEDLINE sentence marked
up in XML for molecular biology named-
entities.

ing consistently annotated human training data
with a large number of classes, etc. In or-
der to make progress it is becoming clear that
several points need to be considered: (1) ex-
tension of feature sets beyond the lexical level
(part of speech, orthography etc.) and use of
higher-levels of linguistic knowledge such as de-
pendency relations, (2) potential for re-use of
external domain knowledge resources such as
gazetteers and ontologies, (3) improved quality
control methods for building annotation collec-
tions, (4) fine grained error analysis beyond the
F-score statistics.

The JNLPBA shared task 1 is an open chal-
lenge task and as such we allowed participants
to use whatever methodology and knowledge
sources they liked in the bio-entity task. The
systems were evaluated on a common bench-
mark data set using a common evaluation
method. Although it is not directly possible
to compare systems due to the diversity of re-
sources used the F-score results provide an ap-
proximate indication of how useful each method
is.

2 Data

The training data used in the task came from
the GENIA version 3.02 corpus (Kim et al.,

1http://research.nii.ac.jp/
∼collier/workshops/JNLPBA04st.htm



2003). This was formed from a controlled search
on MEDLINE using the MeSH terms ‘human’,
‘blood cells’ and ‘transcription factors’. From
this search 2,000 abstracts were selected and
hand annotated according to a small taxon-
omy of 48 classes based on a chemical classi-
fication. Among the classes, 36 terminal classes
were used to annotate the GENIA corpus.

The GENIA corpus is important for two ma-
jor reasons: the first is that it provides the
largest single source of annotated training data
for the NE task in molecular biology and the
second is in the breadth of classification. Al-
though 36 classes is a fraction of the classes con-
tained in major taxonomies it is still the largest
class set that has been attempted so far for the
NE task. In this respect it is an important test
of the limits of human and machine annotation
capability. For the shared task we decided how-
ever to simplify the 36 classes and used only the
classes protein, DNA, RNA, cell line and cell
type. The first three incorporate several sub-
classes from the original taxonomy while the
last two are interesting in order to make the
task realistic for post-processing by a potential
template filling application.

For testing purposes we used a newly anno-
tated collection of MEDLINE abstracts from
the GENIA project. 404 abstracts were used
that were annotated for the same classes of en-
tities: Half of them were from the same domain
as the training data and the other half of them
were from the super-domain of ‘blood cells’ and
‘transcription factors’. Our hope was that this
should provide an important test of generaliz-
ability in the methods used.

3 Evaluation

The 2,000 abstracts of the GENIA corpus ver-
sion 3.02 which had already been made publicly
available were formatted for IOB2 notation and
made available as training materials. For test-
ing, additional 404 abstracts were randomly se-
lected from an unpublished set of the GENIA
corpus and the annotations were re-checked by a
biologist. The training set consists of abstracts
retrieved from the MEDLINE database with
MeSH terms ‘human’, ‘blood cells’ and ‘tran-
scription factors’, and their publication year
ranges over 1990∼1999. Most parts of the test
set include abstracts retrieved with the same
set of MeSH terms, and their publication year
ranges over 1978∼2001. To see the effect of pub-
lication year, the test set was roughly divided

into four subsets: 1978-1989 set (which rep-
resents an old age from the viewpoint of the
models that will be trained using the training
set), 1990-1999 set (which represents the same
age as the training set), 2000-2001 set (which
represents a new age compared to the training
set) and S/1998-2001 set (which represents
roughly a new age in a super domain). The last
subset represents a super domain and the ab-
stracts was retrieved with MeSH terms, ‘blood
cells’ and ‘transcription factors’ (without ‘hu-
man’)2. Table 1 illustrates the size of the data
sets

Table 2 shows the number of entities anno-
tated in each data set3. As seen in the ta-
ble, the annotation density of proteins increases
over the ages significantly, whereas the anno-
tation density of DNAs and RNAs increases in
the 1990-1999 set and slightly decreases in the
2000-2001 set. This tendency roughly corre-
sponds to the expansion in the subject area as a
whole that can be estimated from statistics on
the MeSH terms introduced in each age shown
in Table 3. This observation suggests that the
density of mention of a class of entities in aca-
demic papers is affected by the amount of inter-
est the entity receives in each age.

Figure 2 shows the ratio of annotated struc-
tures in each set. In accordance with our expec-
tation, the 1990-1999 set has the most simi-
lar annotation trait with the training set. The
2000-2001 set is also similar to the training
set, but the 1978-1989 set had quite a differ-
ent distribution of entity classes. The variation
of domain does not seem to make any signif-
icant difference to the distribution of entities
mentioned. One reason may be the large frac-
tion of abstracts from the same domain in the
super domain set. In fact, among 206 abstracts
in the super domain set, 140 abstracts (69%)
are also from the same domain. It also corre-
sponds to the fraction in the whole MEDLINE
database: among 9,362 abstracts that can be
retrieved with MeSH terms, ‘blood cells’ and
‘transcription factors’, 6,297 abstracts (67%)
can also be retrieved with MeSH terms ‘human’,
‘blood cells’ and ‘transcription factors’.

To simplify the annotation task to a simple
linear sequential analysis problem, embedded
structures have been removed leaving only the

2The S/1998-2001 set includes the whole 2000-
2001 set.

3The figures in the parenthesis are the average num-
ber of entities per an abstract in each set.



# abs # sentences # words
Training Set 2,000 20,546 (10.27/abs) 472,006 (236.00/abs) (22.97/sen)

Test Set 404 4,260 (10.54/abs) 96,780 (239.55/abs) (22.72/sen)
1978-1989 104 991 ( 9.53/abs) 22,320 (214.62/abs) (22.52/sen)
1990-1999 106 1,115 (10.52/abs) 25,080 (236.60/abs) (22.49/sen)
2000-2001 130 1,452 (11.17/abs) 33,380 (256.77/abs) (22.99/sen)

S/1998-2001 206 2,270 (11.02/abs) 51,957 (252.22/abs) (22.89/sen)

Table 1: Basic statistics for the data sets

protein DNA RNA cell type cell line ALL
Training Set 30,269 (15.1) 9,533 (4.8) 951 (0.5) 6,718 (3.4) 3,830 (1.9) 51,301 (25.7)

Test Set 5,067 (12.5) 1,056 (2.6) 118 (0.3) 1,921 (4.8) 500 (1.2) 8,662 (21.4)
1978-1989 609 ( 5.9) 112 (1.1) 1 (0.0) 392 (3.8) 176 (1.7) 1,290 (12.4)
1990-1999 1,420 (13.4) 385 (3.6) 49 (0.5) 459 (4.3) 168 (1.6) 2,481 (23.4)
2000-2001 2,180 (16.8) 411 (3.2) 52 (0.4) 714 (5.5) 144 (1.1) 3,501 (26.9)

S/1998-2001 3,186 (15.5) 588 (2.9) 70 (0.3) 1,138 (5.5) 170 (0.8) 5,152 (25.0)

Table 2: Absolute (and relative) frequencies for NEs in each data set. Figures for the test set are
broken down according to the age of the data.

Figure 2: Ratio of annotated NEs
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outermost structures (i.e. the longest tag se-
quence). Consequently, a group of coordinated
entities involving ellipsis are annotated as one
structure like in the following example:

... in [lymphocytes] and [T- and B-
lymphocyte] count in ...

In the example, “T- and B-lymphocyte” is an-
notated as one structure but involves two entity
names, “T-lymphocyte” and “B-lymphocyte”,
whereas “lymphocytes” is annotated as one and
involves as many entity names.

prot. DNA RNA ctype cline
1978-1989 3.3 2.8 1.5 0.1 0
1990-1999 16.6 4.6 7.4 0.2 1.5
2000-2001 40.0 4.0 3.5 0 0

Table 3: MeSH terms in each age (#/year)

4 Evaluation Methodology

Results are given as F-scores using a modified
version of the CoNLL evaluation script and are
defined as F = (2PR)/(P + R), where P de-
notes Precision and R Recall. P is the ratio of
the number of correctly found NE chunks to the
number of found NE chunks, and R is the ra-
tio of the number of correctly found NE chunks
to the number of true NE chunks. The script
outputs three sets of F-scores according to ex-
act boundary match, right and left boundary
matching. In the right boundary matching only
right boundaries of entities are considered with-
out matching left boundaries and vice versa.

5 Participating Systems

5.1 Classification Models

Roughly four types of classification models were
applied by the eight participating systems; Sup-
port Vector Machines (SVMs), Hidden Markov
Models (HMMs), Maximum Entropy Markov
Models (MEMMs) and Conditional Random
Fields (CRFs). The most frequently applied



models were SVMs with totally five systems
adopting SVMs as the classification models ei-
ther in isolation (Park et al., 2004; Lee et
al., 2004) or in combination with other models
(Zhou and Su, 2004; Song et al., 2004; Rössler,
2004). HMMs were employed by one system in
isolation (Zhao, 2004) and by two systems in
combination with SVMs (Zhou and Su, 2004;
Rössler, 2004). Similarly, CRFs were employed
by one system in isolation (Settles, 2004) and
by another system in combination with SVMs
(Song et al., 2004). It is somewhat surprising
that Maximum Entropy Models were applied
by only one system (Finkel et al., 2004), while
it was the most successfully applied model in
the CoNLL-2003 Shared Task of Named Entity
Recognition, and at this time also the MEMM
system yields quite good performance. One in-
terpretation on this may be the CRF is often
regarded as a kind of version-upped model of
the MEMM (in the sense that both are condi-
tional, exponential models) and thus is replac-
ing MEMM.

5.2 Features and External Resources

It has been found that utilizing various sources
of information is crucial to get good perfor-
mance in this kind of task. Table 4 outlines
some of the features exploited by the systems
participating in the JNLPBA 2004 shared task
(the table also lists the classification models em-
ployed and external resources exploited by the
systems to provide the outline of the systems at
a glance).

Lexical features (words) were widely ex-
ploited by three systems that didn’t employ
SVMs. It seems that this may be due to SVMs’
high time complexity and actually other two
SVM systems also employed lexical features
only in a limited way. Instead, affixes, ortho-
graphic features or word shapes that are all gen-
eralized forms of lexical features were actively
exploited by most of the systems. The ATCG
sequence feature is an example of domain spe-
cific orthographic features and was incorporated
in three systems. Park et al. (2004) suggested
the use of word variation features, a unique way
of selecting substrings from words, but the ef-
fectiveness was not reported.

Part-of-speech information was incorporated
in five systems: four of them utilized domain-
specialized part-of-speech taggers (Zhou and
Su, 2004; Finkel et al., 2004; Song et al., 2004;
Park et al., 2004) and the other utilized general-

purpose taggers (Lee et al., 2004). BeseNP tags
and deep syntactic features were also exploited
by several systems but the effectiveness was not
clearly examined.

The top-ranked two systems incorporated in-
formation from gazetteers and employed abbre-
viation handling mechanisms, which were re-
ported to give good effect. However, one par-
ticipant (Settles, 2004) reported that their at-
tempt to utilize gazetteers (together with other
resources) had failed in gaining better overall
performance.

To overcome the shortage of training materi-
als, several systems attempted to use external
resources. Gazetteers are also examples of such
resources. MEDLINE database was explored as
a source of a large corpus that is similar to the
training corpus, but one participant (Rössler,
2004) reported the attempt was not success-
ful. Finkel et al. (2004) exploited BNC cor-
pus and World Wide Web as knowledge sources
and achieved good performance., but the effec-
tiveness of the use of such resources was not
clearly examined. Song et al. (2004) exploited
automatically generated virtual examples and
reported good effect on both recall and preci-
sion. Lee et al. (2004) utilized external protein
and gene taggers instead of using gazetteers but
the effectiveness was not reported.

5.3 Performances4

Table 5 lists entity recognition performance of
each system on each test set. The baseline
model (BL) utilizes lists of entities of each class
collected from the training set, and performs
longest match search for entities through the
test set. Frequency of each entity with each
class is referred to break ties.

It may be notable that SVMs worked much
better in combination with other models, while
other models showed reasonable performance
even in isolation. This fact suggests that global
optimization over whole sequence (e.g, Viterbi
optimization) is crucial in this type of tasks. As
is well known, the outputs of SVMs are not
easy to use in global optimization. It seems
(Zhou and Su, 2004) overcomes the drawback of
SVMs by mapping the SVM output into proba-
bility, and complementing it with Markov mod-
els. Their remarkable performance seems due
to the well designed classification model and the

4A comprehensive report of systems perfor-
mance is available at http://www-tsujii.is.s.u-
tokyo.ac.jp/GENIA/ERtask/report.html.



CM lx af or sh gn wv ln gz po np sy tr ab ca do pa pr ext.
Zho SH - + + - + - - + + - - + + + - - + -
Fin M + + - + - - - + + - + - + - + + + B, W
Set C + + + + - - - (+) - - - (+) - - - - + (W)
Son SC * + + - - - - - + + - - - - - - + V
Zha H + - - - - - - - - - - - - - - - + M
Rös SH - + + - + - + - - - - - - - - - + (M)
Par S - + + + + + - - + + - + - - - - - M, P
Lee S * + - - - - - - + - - - - - - - - Y, G

Table 4: Overview of participating systems in terms of classification models, main features and
external resources, sorted by performance. Classification Model (CM): S: SVM; H: HMM; M:
MEMM; C: CRF; lx: lexical features; af: affix information (character n-grams); or: orthographic
information; sh: word shapes; gn: gene sequences (ATCG sequences); wv: word variations; ln:
word length; gz: gazetteers; po: part-of-speech tags; np: noun phrase tags; sy: syntactic tags;
tr: word triggers; ab: abbreviations; ca: cascaded entities; do: global document information; pa:
parentheses handling; pr: previously predicted entity tags; External resources (ext): B: British
National Corpus; M: MEDLINE corpus; P: Penn Treebank II corpus; W: world wide web; V:
virtually generated corpus; Y: Yapex; G: GAPSCORE.

1978-1989 set 1990-1999 set 2000-2001 set S/1998-2001 set Total
Zho 75.3 / 69.5 / 72.3 77.1 / 69.2 / 72.9 75.6 / 71.3 / 73.8 75.8 / 69.5 / 72.5 76.0 / 69.4 / 72.6
Fin 66.9 / 70.4 / 68.6 73.8 / 69.4 / 71.5 72.6 / 69.3 / 70.9 71.8 / 67.5 / 69.6 71.6 / 68.6 / 70.1
Set 63.6 / 71.4 / 67.3 72.2 / 68.7 / 70.4 71.3 / 69.6 / 70.5 71.3 / 68.8 / 70.1 70.3 / 69.3 / 69.8
Son 60.3 / 66.2 / 63.1 71.2 / 65.6 / 68.2 69.5 / 65.8 / 67.6 68.3 / 64.0 / 66.1 67.8 / 64.8 / 66.3
Zha 63.2 / 60.4 / 61.8 72.5 / 62.6 / 67.2 69.1 / 60.2 / 64.7 69.2 / 60.3 / 64.4 69.1 / 61.0 / 64.8
Rös 59.2 / 60.3 / 59.8 70.3 / 61.8 / 65.8 68.4 / 61.5 / 64.8 68.3 / 60.4 / 64.1 67.4 / 61.0 / 64.0
Par 62.8 / 55.9 / 59.2 70.3 / 61.4 / 65.6 65.1 / 60.4 / 62.7 65.9 / 59.7 / 62.7 66.5 / 59.8 / 63.0
Lee 42.5 / 42.0 / 42.2 52.5 / 49.1 / 50.8 53.8 / 50.9 / 52.3 52.3 / 48.1 / 50.1 50.8 / 47.6 / 49.1
BL 47.1 / 33.9 / 39.4 56.8 / 45.5 / 50.5 51.7 / 46.3 / 48.8 52.6 / 46.0 / 49.1 52.6 / 43.6 / 47.7

Table 5: Performance of each participating system and a baseline model (BL) (recall / precision /
F-score)

rich set of features.

As is naturally expected, most systems (5 out
of 8) show their best performance on the 1990-
1999 set which is believed to have the most
similar annotation trait. The same tendency is
observed more clearly with recall (7 out of 8
show their best performance on the 1990-1999
set) while no such tendency is observed with
precision. If we accept such tendency of showing
best performance on the most similar test set as
natural, one interpretation on the observation
might be that positive information has been well
exploited while negative information has not.
Clearly, a such case is the baseline model which
utilizes only positive information and no nega-
tive information. Finkel et al. (2004) explic-
itly pointed out the problem of “abusing” posi-
tive information with regard to using gazetteers,
and utilized frequency information from BNC
corpus to prevent such “abusement”. Settles
(2004)’s CRF system deserves special note in
the sense that it achieved comparable perfor-

mance to top ranked systems with a rather sim-
ple feature set. This fact may suggest that inte-
gration of information is as much important as
development of useful features.

As the resulting performance may not seem
very successful, other systems suggest interest-
ing approaches: Song et al. (2004) reports
about the effectiveness of using virtual exam-
ples. Zhao (2004) reports about the usefulness
of unlabeled MEDLINE corpus as a complement
to expensive and limited size of labeled corpus.
Rössler (2004) reports their experience to adapt
an NER system for German to biomedical do-
main. Park et al. (2004) reports their efforts
to find out useful information by corpus com-
parison. Lee et al. (2004) suggests the use of
external protein/gene taggers instead of using
gazetteers.

6 Conclusion

While it is not entirely meaningful to rank sys-
tems performance according to simple F-scores,



the accuracy results do nevertheless show some
important trends that may help guide future
system developers in the bio-entity task. It is
clear that we have to move beyond simple lexical
features if we want to obtain high levels of per-
formance in molecular biology and the top per-
forming systems were seen to be those that em-
ployed strong learning models (SVM, MEMM
and CRF), rich feature sets, support for ‘dif-
ficult’ constructions such as parenthesized ex-
pressions and a sophisticated mix of external
resources such as gazette lists and ontologies
which provide terminological resources. It is
also interesting to observe that we have seen the
beginning of a trend in the use of the Web which
can provide online access to dynamically up-
dated resources or sophisticated search for sets
of similar terms.
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