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Abstract: In many real applications of text mining, information retrieval and natural language processing, large-scale
features are frequently used, which often make the employed machine learning algorithms intractable, leading
to the well-known problem “curse of dimensionality”. Aiming at not only removing the redundant informa-
tion from the original features but also improving their discriminating ability, we present a novel approach
on supervised generation of low-dimensional, proximity-based, graph embeddings to facilitate multi-label
classification. The optimal embeddings are computed from a supervised adjacency graph, called multi-label
graph, which simultaneously preserves proximity structures between samples constructed based on feature and
multi-label class information. We propose different ways to obtain this multi-label graph, by either working in
a binary label space or a projected real label space. To reduce the training cost in the dimensionality reduction
procedure caused by large-scale features, a smaller set of relation features between each sample and a set of
representative prototypes are employed. The effectiveness of our proposed method is demonstrated with two
document collections for text categorization based on the “bag of words” model.

1 INTRODUCTION

In information retrieval (IR), text mining (TM) and
natural language processing (NLP), research on how
to automatically generate a small set of informative
features from large-scale features, such as bag of n-
grams, are of increasing interest. The goal is not only
to reduce the computational cost but also to improve
the performance of a followed learning task, which
corresponds to the significant problem of dimension-
ality reduction (DR) in machine learning. Relevant
reduction techniques commonly used by IR, TM and
NLP researchers include feature selection using wrap-
per or filter models (Lewis, 1992; Bekkerman et al.,
2003; Li et al., 2009), feature clustering (Bekkerman
et al., 2003; Dhillon et al., 2003), and latent variable
models (Deerwester et al., 1990; Blei et al., 2003).

More sophisticated research for DR has been
developed via manifold learning, multidimensional
scaling and spectral analysis. These methods gener-
ate low-dimensional embeddings so that they preserve
certain properties of the original high-dimensional
data. Different properties are usually quantified by
different objective functions, and the DR problem
can thus be formulated as an optimization problem
(Kokiopoulou and Saad, 2007). For instance, princi-

pal component analysis (PCA) (Jolliffe, 1986) pre-
serves the global structure of the data by maximiz-
ing the variance of the projected embeddings. Lo-
cally linear embedding (LLE) (Roweis and Saul,
2000) and orthogonal neighborhood preserving pro-
jections (ONPP) (Kokiopoulou and Saad, 2007) pre-
serve the intrinsic geometry at each neighborhood by
minimizing a reconstruction error. Spectral cluster-
ing (SC) analysis (Chan et al., 1994; Shi and Ma-
lik, 2000; Luxburg, 2007), Laplacian eigenmaps (LE)
(Belkin and Niyogi, 2003), locality preserving pro-
jection (LPP) (He and Niyogi, 2003), and orthogonal
LPP (OLPP) (Kokiopoulou and Saad, 2007) preserve
a certain affinity graph constructed from the original
data by minimizing the penalized distances between
the embeddings of adjacent points. These methods
work in an unsupervised manner, which only preserve
the data property in the feature space. Although the
unsupervised reduction provides a compact represen-
tation of the data, when it is used as a preprocessing
step followed by a classification task, it may not al-
ways improve the final performance.

When there is extra label (class, category)
information available, it is natural to pursue
supervised/semi-supervised DR to improve the classi-
fication performance. Various DR research has been
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conducted for single-label classification task, where
each given sample belongs to only one class (He,
2004; Cai et al., 2007a; Yan et al., 2007; Zhang et al.,
2007; Kokiopouloua and Saadb, 2009; Sugiyama,
2007; Sugiyama, 2010). Among these methods,
Fisher discriminant analysis (FDA) (Fisher, 1936) is
the most popular one, which maximizes the between-
class scatter while minimizes the within-class scatter
of the projected embeddings. These methods work in
a similar way of minimizing the penalized distances
between the adjacent embeddings, of which the only
difference lies on the construction of an adjacency
graph and a constraint matrix. Single-label graphs are
employed in above methods, where the adjacency is
non-zero only when the two points belong to the same
class.

Recently, multi-label classification becomes a re-
quirement in NLP, TM and bioinformatics, such as
text categorization (Zhang et al., 2008; Tang et al.,
2009) and protein function prediction (Barutcuoglu
et al., 2006). It allows the given samples to belong
to multiple classes. In this case, the above single-
label DR methods become inapplicable as there is
no clear definition of two samples belonging to the
same class, e.g. some of the classes two samples be-
long to are the same, but not all. Thus, to perform
supervised/semi-supervised DR for multi-label classi-
fication, one needs to avoid to incorporate such a defi-
nition into the computation. Instead, some existing re-
search focuses on construction of different optimiza-
tion objective functions other than the pernalized dis-
tances between intra-class samples in the embedded
space, e.g. the reconstruction error of both features
and labels (Yu et al., 2006), correlation (Hardoon
et al., 2004), independence (Zhang and Zhou, 2007)
and mutual information (HildII et al., 2006) between
the embeddings and multiple labels. Different from
these, a hyper-graph is used to model the multi-label
information, and the method replaces the standard
Laplacian of LPP with a hyper-graph Laplacian (Sun
et al., 2008).

In this paper, we show that, to achieve supervised
DR for multi-label classification, one does not need
to construct a new optimization objective function,
but the penalized distances as used by many exist-
ing DR methods (Chan et al., 1994; Shi and Ma-
lik, 2000; Luxburg, 2007; Belkin and Niyogi, 2003;
He and Niyogi, 2003; Kokiopoulou and Saad, 2007;
Fisher, 1936; Yan et al., 2007). Also, to model the
multi-label information, it is not necessary to use a
hypergraph, but simply a binary label matrix. Multi-
label information can be appropriately modelled by
discovering the proximity structure between samples
in a space spanned by label vectors. Then, supervised

embeddings can be computed by using penalizing
weights obtained from both label-based and feature-
based proximity information. We propose different
ways to capture the intrinsic proximity structure based
on the multi-label class information, leading to the
label-based adjacent graph WY . It is then linearly
combined with another adjacent graph WX represent-
ing the geometric structure of features. We also in-
vestigate mitigation of the high training cost normally
associated with a DR algorithm caused by large num-
ber of features. To deal with large-scale features and
comparatively large number of training samples, we
generate a small set of representative prototypes to
compute a set of similarity (or dissimilarity) features
(termed as relation features) between each input sam-
ple and these prototypes. These new relation features
will then be used to generate the embeddings.

2 GRAPH EMBEDDINGS

Given a set of data points {xi}n
i=1 of dimension d,

where xi = [xi1, xi2, . . . , xid ]
T , the goal of DR is to

generate a set of optimal embeddings {zi}n
i=1 of di-

mension k (k� d), where zi = [zi1, zi1, . . . , zik]
T , so

that the transformed n× k feature matrix Z = [zi j] is
an accurate representation of the original n× d fea-
ture matrix X= [xi j], or with improved discriminating
power.

2.1 Framework

A graph embedding framework has been proposed as
a general platform for developing new DR algorithms
(Yan et al., 2007). It minimizes the penalized dis-
tances between the embeddings:

min
1
2

n

∑
i, j=1

wi j‖zi−z j‖2
2, (1)

under the constraint ZT BZ = Ik×k, where wi j is a
weight value to define the degree of “similarity” or
“closeness” between the i-th and j-th samples, and B
is an n× n constraint matrix. Letting W = [wi j] de-
note the n×n symmetric weight matrix, and D(W) is
a diagonal matrix formed by the vector W×1n×1, Eq.
(1) can be rewritten as

min
Z∈Rn×k,

ZT BZ=Ik×k

tr[ZT (D(W)−W)Z], (2)

of which the output is termed as graph embeddings.
Different algorithms define different weight and con-
straint matrices. The SC analysis in (Luxburg, 2007),
called unnormalized SC (USC), employs an identity
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matrix as the constraint matrix: B = In×n. The LE
and the SC analysis in (Shi and Malik, 2000), called
normalized SC (NSC), employs the degree matrix
D(W) as the constraint matrix: B = D(W). For these
methods, the used weight matrices are determined by
a feature-based adjacency graph, which can be con-
structed by different ways as described in Section 2.3.
The optimal solution of Eq. (1) is denoted by Z∗,
which is the top k eigenvectors of the generalized
eigenvalue problem (D(W)−W)Z∗ = BZ∗S, corre-
sponding to the k smallest non-zero eigenvalues.

2.2 Out-of-sample Extension

The methods that can be expressed in Eq. (2) only
generate embeddings for the n input (training) sam-
ples. However, given a different set of m query sam-
ples with an m×d feature matrix X̃, it is not straight-
forward to compute the embeddings of new query
samples because of the difficulty in recomputing the
eigenvector. Various research has been developed on
how to formulate the out-of-sample extension (Ben-
gio et al., 2003; Cai et al., 2007a). Since such exten-
sion is necessary for DR to facilitate a classification
task, we provide in the following the most commonly
used extension and another alternative based on least
squares model, both using projection technique that
assumes the embeddings are linear combinations of
the original features, given as Z = XP.

2.2.1 Extension 1

The most commonly used way to achieve out-of-
sample extension is to directly incorporate Z = XP
into Eq. (2), and thus, a set of optimal projections
P∗ are obtained by solving the following generalized
eigenvalue problem:

X(D(W)−W)XT P∗ = XBXT P∗S. (3)

The embeddings are then computed by Z = XP∗ for
the training samples, and Z̃ = X̃P∗ for the query sam-
ples. LE with such an extension leads to LPP. OLPP
imposes the orthogonality condition to the projection
matrix, of which the optimal projections are the top k
eigenvectors of the matrix X(D−W)XT , correspond-
ing to the k smallest non-zero eigenvalues.

2.2.2 Extension 2

An alternative to achieve out-of-sample extension
is to minimize the reconstruction error (Cai et al.,
2007a) between the projected features and the com-
puted embeddings Z∗ with a regularization term after
solving Eq. (2):

min
Λ∈Rd×k

‖XP−Z∗‖2
F +α‖P‖2

F, (4)

where α > 0 is a user-defined regularization parame-
ter. The optimal least squares solution of Eq. (4) is

P∗ = (XT X+αId×d)
−1XT Z∗. (5)

Then, the embeddings of the new query sample can
be approximated by Z̃ = X̃P∗.

2.3 Feature-based Adjacency Graph

The embeddings obtained by Eq. (2) preserve the
proximity structure between samples in the original
feature space. Such a proximity structure is cap-
tured by the weight matrix W = [wi j] of a feature-
based adjacency graph, where wi j is non-zero only
for adjacent nodes in the graph. There are two prin-
cipal ways to define the adjacency: (1) whether two
samples are the K-nearest neighbors (KNN) of each
other; and (2) whether a certain “closeness” mea-
sure between two samples is within a given range.
There are also different ways to define the weight ma-
trix: (1) Constant value, where wi j = 1 if the i-th
and j-th samples are adjacent, while wi j = 0 other-
wise. (2) Gaussian kernel (Belkin and Niyogi, 2003;

He and Niyogi, 2003), where wi j = exp
(
−‖xi−x j‖2

τ

)
,

and τ > 0. (3) Domain-dependent similarity matrix
between the samples (Dhillon, 2001). (4) The opti-
mal affinity matrix in LLE computed by minimizing
the reconstruction error between each sample and its
KNNs (Roweis and Saul, 2000). All these computa-
tions are unsupervised, which only compute W from
the feature matrix X and preserve the geometric struc-
ture of the features.

2.4 Single-label Adjacency Graph

In content-based image retrieval, to find better im-
age representation, additional label information (rel-
evance feedbacks) is employed to construct a super-
vised (or semi-supervised with partial label informa-
tion) affinity graph (He, 2004; Yu and Tian, 2006;
Cai et al., 2007a). In an incremental version of
LPP (He, 2004) and a supervised version of ONPP
(Kokiopoulou and Saad, 2007), a binary labeled data
graph is used, that defines the following weight ma-
trix:

wi j =

{
1 if xi andx j belong to the same class,
0 otherwise.

(6)
Such a weight matrix can be further scaled by sizes of
different classes:

wi j =

{ 1
ns

if xi andx j belong to the sth class,
0 otherwise,

(7)
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where ns denotes the number of training samples be-
longing to the s-th class (He, 2004; Cai et al., 2007a;
Cai et al., 2007b). With Eq. (7), minimizing the per-
nalized distances between embeddings is equivalent
to minimizing the within-class scatter of Fisher cri-
terion (He et al., 2005; Yan et al., 2007). By incor-
porating the local data structure into FDA, the weight
matrix of the local FDA (Sugiyama, 2007) is given by

wi j =

{
li j
ns

if xi andx j belong to the sth class,
0 otherwise.

(8)
By updating the local neighborhood weight matrix
with partial label information, the following weight
matrix is used for semi-supervised DR (He, 2004; Cai
et al., 2007a):

wi j =

 1 if xi andx j belong to the same class
0 if xi andx j belong to different classes,

w′i j if there is no label information,
(9)

where w′i j is the weight of a feature-based adjacency
graph as discussed in Section 2.3. These methods
model the label information by simply considering
whether two samples are from the same class. This
is unsuitable for multi-label classification, since two
samples may share some but not all labels.

3 PROPOSED METHOD

Given a classification dataset of c different classes
(categories), we model the class (target) information
of the training samples as an n× c label matrix: Y =
[yi j] ∈ {0,1}n×c, yi j = 1 if the i-th sample belongs
to the j-th class t j, and yi j = 0 otherwise. The la-
bel information is the desired output of the input sam-
ples, while the feature information is extracted from
the samples so that it can represent the characteris-
tics distinguishing different types of desired outputs.
In the original feature space Rd , proximity structures
between samples are captured by different adjacency
graphs as discussed in Section 2.3. There also exist
such structures in the label space {0,1}c. Ideally, if
the features can accurately describe all the discrim-
inating characteristics, the proximity structures com-
puted from the features and labels should be very sim-
ilar. However, when processing real dataset, what
may happen is that, in the original feature space,
the data points that are close to each other may be-
long to different classes, while on the contrary, the
data points that are in a distant to each other may
belong to the same class. This subsequently leads
to incompatible proximity structures in the feature
and label spaces, and thus unsatisfactory classification

performance. Aiming at generating a set of embed-
dings with improved discriminating ability for multi-
label classification, we decide to modify the proxim-
ity structure of the embedded features based on the
label information. This leads to two research issues:
(1) how to capture the proximity structure in the la-
bel space, (2) how to combine the label-based and
feature-based proximity structures.

3.1 Multi-label Adjacency Graph

To model the proximity structure in the multi-label
space, our basic idea is to construct an adjacent graph
denoted by GY (V,E), whose nodes V are the n data
points {yi}n

i=1 corresponding to the n training sam-
ples, where yi = [yi1, yi2, . . . , yic]

T . We define the ad-
jacency by including the KNNs of a given node as
its adjacent nodes. These KNNs are determined by a
certain similarity measure, which is also used as the
weight between two adjacent nodes. Different defini-
tions of similarity measures between two nodes deter-
mine different adjacent graphs, thus different weight
matrices WY . In this work, we propose two schemes
to compute the similarity between nodes based on the
multi-label information: (1) by working in the binary
space of labels {0,1}c, (2) by working in the trans-
formed real space of labels.

3.1.1 Proximity in Binary Label Space

In the binary label space, all the label vectors {yi}n
i=1

are binary strings with the same length. The follow-
ing string-based distance/similarity can be employed
to capture the proximity structure between samples in
the label space:

• Hamming Distance between two strings of equal
length is the number of positions at which the
corresponding bits are different, denoted as ‖yi−
y j‖H . This is also the edit distance between two
binary strings of equal length. By employing the
Gaussian kernel, a Hamming-based similarity be-
tween two strings can be obtained:

simH(yi,y j) = exp
(
−‖yi−y j‖2

H
τ

)
. (10)

The adjacent graph GY constructed from the Ham-
ming distance capture the proximity information
between samples based on how many distinct
classes they belong to.

• And-based Similarity is the size of the intersec-
tion between two binary strings, given as

simA(yi,y j) = ‖yi∧y j‖1. (11)
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This provides a measure of “closeness” between
two samples by the number of classes they both
belong to, which we believe is important to cap-
ture the intrinsic structure of the labels. Assuming
the importance of a shared class is related to its
size in a collection of different sizes of multiple
classes, we can further scale the above and-based
similarity by

sim(s)
A (yi,y j) = ‖(yi∧y j) ·s‖1, (12)

where s=
[

1
n1
, 1

n2
, . . . , 1

nc

]T
is a scaling vector re-

lated to class size.
• Søensen’s Similarity Coefficient is a statistic that

can be used for comparing the similarity of two
binary strings, given as

simS(yi,y j) =
2‖yi∧y j‖1

‖yi‖1 +‖y j‖1
, (13)

which is also known as Dice’s coefficient. This is
equivalent to further scaling the and-based simi-
larity in Eq. (11) by 2

‖yi‖1+‖y j‖1 , rather than the
inverse of the class size.

• Jaccard Similarity Coefficient is another statis-
tic that can be used:

simJ(yi,y j) =
‖yi∧y j‖1

‖yi∨y j‖1
, (14)

which is also known as Jaccard index. Similarly,
this can be viewed as a scaled and-based similar-
ity, of which the used scaling vector has elements
equal to 1

‖yi∨y j‖1 . To compare Eq. (13) and Eq.
(14), we have

‖yi∨y j‖1−
1
2
(‖yi‖1 +‖y j‖1)

= ‖yi∨y j‖1−
1
2
(‖yi∨y j‖1 +‖yi∧y j‖1)

=
1
2
(‖yi∨y j‖1−‖yi∧y j‖1)≥ 0.

It is obvious that simS(yi,y j)> simJ(yi,y j)> 0,
when yi and y j share some classes but not all; and
simS(yi,y j) = simJ(yi,y j) > 0, when yi and y j
are identical; also simS(yi,y j) = simJ(yi,y j) = 0
when yi and y j do not have any classes in com-
mon.

To construct a proximity structure between samples,
Hamming distance evaluates the number of “distinct
classes”, while the rest measures evaluate the number
of “shared classes” but with different scalings. For
single-label classification, by setting the number of
KNNs as n, the weight matrix computed with coeffi-
cients in Eq. (11), Eq. (13), and Eq. (14) all lead to
Eq. (6), while, the scaled coefficient in Eq. (12) leads
to Eq. (7).

3.1.2 Proximity in Projected Label Space

We can also seek the latent similarity between binary
label vectors in a transformed and more compact real
space. In the first stage, we map each c-dimensional
binary label vector yi to a kc-dimensional real space
(kc ≤ c) and obtain a set of transformed label vectors
{ŷi}n

i=1. One way for achieving this is to employ a
projection technique that maximizes the variance of
the projectionsŶ = YPy as

max
Py∈Rc×kc ,

PT
y Py=Ikc×kc

1
n−1

n

∑
i=1

∥∥∥∥∥PT
y yi−

1
n

n

∑
j=1

PT
y y j

∥∥∥∥∥
2

2

. (15)

This is actually to apply PCA in the binary label
space, mapping the c-dimensional label vectors into
a smaller number of uncorrelated directions. The op-
timal solution of the above maximization problem is
the top kc right singular vectors of the n× c matrix
(In×n− 1

nee
T )Y, corresponding to its largest kc sin-

gular values (Wall et al., 2003). In the second stage of
Scheme 2, the similarity between two label vectors is
obtained by

simP(yi,y j) = exp
(
−‖ŷi− ŷ j‖2

2
τ

)
. (16)

Different from scheme 1, the graph GY is constructed
from the label embeddings {ŷi}n

i=1. It should be men-
tioned that when the problem at hand has a large num-
ber of classes, such as text categorization with large
taxonomies (Bennett and Nguyen, 2009), the label
matrix Y is usually very sparse due to lack of train-
ing samples for some classes. In this case, Scheme
2 is preferred over Scheme 1, as the projected label
vectors provide a more compact, simplified and ro-
bust representation with reduced noise.

3.1.3 Graph Modification

Let WX denote the feature-based weight matrix ob-
tained as discussed in Section 2.3. The following
scheme is used to combine the intrinsic label-based
and the geometric feature-based proximity structures,
leading to a modified weight matrix W:

W = (1−θ)
WX

αX
+θ

WY

αY
, (17)

where 0 ≤ θ ≤ 1 is a user-defined parameter control-
ling how much the embeddings should be biased by
the label information. Here, we scale the two weight
matrices WX and WY with αX and αY , respectively,
which are the means of the absolute values of the non-
zero elements in WX and WY , respectively. The pur-
pose to introduce αX and αY is to control the tradeoff

KDIR 2010 - International Conference on Knowledge Discovery and Information Retrieval

78



Table 1: A list of functions used to compute the relation
features.

Measures Functions

Minkowski Distance ri j =
(
∑

d
t=1 |xit − p jt |P

) 1
P

Dot Product ri j = ∑
d
t=1 xit p jt

Cosine Similarity ∑
d
t=1 xit p jt

‖xi‖2×‖p j‖2

Polynomial Kernel ri j =
(
∑

d
t=1 xit p jt +1

)ρ

Gaussian Kernel ri j = exp
(
− ‖xi−p j‖2

2
σ2

)
Pearson Correlation ri j =

1
d ∑

d
t=1

(
xit−µx

t
σx

t

)(
p jt−µp

t
σ

p
t

)
between WX and WY only with one parameter θ. Us-
ing the above combined weight matrix in Eq. (2), we
achieve supervised implementation when θ> 0, while
unsupervised when θ = 0. It is worth to mention that
when θ = 1 no feature structure is considered, and
the computed embeddings are forced to preserve the
structure in the label space. This may lead to over-
fitting when there exist erroneously labeled samples.
Thus, an appropriate selection of the degree parame-
ter θ is required by the users, given a specific classifi-
cation task.

3.2 Computation Reduction

With the out-of-sample extension 1, one needs to
compute the (generalized) eigen-decomposition of a
d×d matrix, which has a computational cost around
O( 9

2 d3) (Steinwart, 2001). With the extension 2, one
needs to compute the inverse of a d×d matrix, which
has a computational cost around O(d2.376) (Copper-
smith and Winograd, 1990). This is often unaccept-
ably high with large-scale features d � n. To over-
come this, we employ a set of relation values, such
as distance, similarity and correlation, between each
sample and p ≤ n prototypes as the new input fea-
tures of the DR algorithm, when dealing with large-
scale tasks (d� n). In Table 1 , we list several rela-
tion measures that can be used to compute these rela-
tion features. Previous research (Pekalska and Duin,
2002; Pekalska et al., 2006) has already shown that
(dis)similarities between the training samples and a
collection of prototype objects can be used as input
features to build good classifiers. This means that, for
each sample, its (dis)similarities to prototypes pos-
sess comparable discriminating ability to its original
features. Thus, we expect the discriminating ability
of the embeddings computed from the relation values
should be similar to that of the embeddings computed
from the original features.

To obtain prototypes from training samples, dif-
ferent methods can be used (Huang et al., 2002;
Mollineda and andE. Vidal, 2002; Pekalska et al.,
2006), among which random selection is the simplest

(Pekalska et al., 2006). Existing results show that, by
directly employing the dissimilarities between each
sample and the prototypes as the input feature of a lin-
ear classifier, different prototype selection techniques
lead to quite similar classification performance as the
number of used prototypes increases, even including
the random selection (Pekalska et al., 2006). This
means, when the number of used prototypes is large
enough, the discriminating ability of the relation val-
ues between samples and the selected prototypes does
not vary much with respect to different selected pro-
totypes.

In this work, we employ the following prototype
selection scheme: Letting p denote the number of se-
lected prototypes, we use the ratio 0 < β = p

n ≤ 1 as
a user-defined parameter to control the size of proto-
types. When β ≥ 50%, we simply pick up p training
samples by random as prototypes. When β < 50%,
we perform the k-center clustering analysis for data
points belonging to the same class, by employing
the Gonzalez’s approximation algorithm (Gonzalez,
1985). As the objective of the k-center clustering
analysis is to group a set of points into different clus-
ters so that the maximum intercluster distance is min-
imized, the obtained cluster centers (heads) can reli-
ably summarize the distribution of the original data.
Such a procedure is repeated c times for c different
classes. For each class ci, a set of resulting cluster
heads are obtained from the analysis and are used as
the prototypes, denoted as Hi. Let P denote the to-
tal set of obtained prototypes and p denote the size of
P, we have P= H1

⋃
H2

⋃
· · ·

⋃
Hc, and p = |P|. Let

P = [pi j] denote the p×d feature matrix for the p ob-
tained prototypes, R = [ri j] denote the n× p relation
matrix between the n training samples and the p pro-
totypes, and R̃ the m× p relation matrix between the
m query (test) samples and the p prototypes. We use
R to replace X in Eqs. (2, 3 and 5), and Z̃ = R̃P∗.

4 EXPERIMENTS

In order to empirically investigate our proposed
proximity-based embeddings for multi-label classifi-
cation, two text categorization problems with large-
scale features are studied, of which the used document
collections are briefly described as follows.

Reuters Document Collection. The “Reuters-
21578 Text Categorization Test Collection” contains
articles taken from the Reuters newswire1, where

1http://archive.ics.uci.edu/ml/support/Reuters-
21578+Text+Categorization+Collection
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Table 2: Performance comparison using the Reuters dataset.

corn grain wheat acq earn ship interest money-fx crude trade Average
LE 0.851 0.902 0.845 0.924 0.956 0.845 0.826 0.847 0.861 0.795 0.865

SLE 0.907 0.957 0.902 0.960 0.983 0.878 0.849 0.885 0.900 0.888 0.911

USC 0.846 0.902 0.865 0.923 0.955 0.858 0.827 0.852 0.868 0.807 0.870
SUSC 0.907 0.956 0.902 0.959 0.983 0.882 0.855 0.885 0.911 0.875 0.912

OLPP 0.882 0.948 0.869 0.936 0.973 0.870 0.829 0.870 0.871 0.862 0.891
SOLPP 0.910 0.956 0.896 0.960 0.983 0.866 0.850 0.885 0.904 0.884 0.909

each article is designated into one or more semantic
categories. A total number of 9,980 articles from 10
overlapped categories were used in our experiments.
We randomly divide the articles from each category
into three partitions with nearly the same size, for the
purpose of training, validation and test. This leads to
3,328 articles for training, and 3,326 articles for val-
idation and test, respectively, where around 18% of
these articles belong to 2 to 4 different categories at
the same time, while each of the rest belongs to a sin-
gle category.

EEP Document Collection. A collection of doc-
uments is supplied by Education Evidence Portal
(EEP)2, where each document is a quite lengthy full
paper or report (approximately 250 KB on average af-
ter converting to plain text). Domain experts have de-
veloped a taxonomy of 108 concept categories in the
area and manually assigned categories to documents
stored in the database. This manual effort has resulted
in 2,157 documents, including 1,936 training docu-
ments and 221 test documents, where 96% of these
documents were assigned 2 to 17 different categories,
while only one category for the rest.

Used Features. The numerical features for classi-
fication were extracted as follows: We first applied
Porter’s stemmer3 to the documents, then, extracted
word uni-grams, bi-grams, and tri-grams from each
documents. For the Reuters document collection, af-
ter filtering the low-frequency words, the tf-idf values
of 24,012 word uni-grams are used as the original fea-
tures. This leads to a 3,328×24,012 feature matrix X
for the training samples, while, a 3,326×24,012 fea-
ture matrix X̃ for the query sample, in both the valida-
tion and test procedures. For the EEP document col-
lection of full papers, the corresponding binary val-
ues of the word uni-grams, bi-grams, and tri-grams,
representing whether the terms occurred in the doc-
uments, are used as the original features. This leads
to a 1,936× 176,624,316 feature matrix X for the

2http://www.eep.ac.uk
3http://tartarus.org/ martin/PorterStemmer/

training samples, while, a 221×176,624,316 feature
matrix X̃ for the test samples.

Table 3: Performance comparison using the EPP dataset.
Cat. 1-5 are the five largest classes containing the most sam-
ples.

Cat. 1 Cat. 2 Cat. 3 Cat. 4 Cat. 5 Average
LE 0.646 0.544 0.690 0.553 0.554 0.355

SLE 0.662 0.561 0.752 0.579 0.538 0.394

USC 0.646 0.554 0.691 0.563 0.494 0.346
SUSC 0.671 0.566 0.717 0.557 0.557 0.410

OLPP 0.652 0.556 0.710 0.589 0.564 0.424
SOLPP 0.677 0.574 0.712 0.616 0.550 0.457

4.1 Experimental Setup

In this paper, we propose different ways to construct
the multi-label graph so that it can be used by Eq. (2)
to obtain the proximity-based embeddings. The pro-
posed graph is applied to two settings of the frame-
work, corresponding to LE and USC, respectively.
Our proposed extension 2 is used to compute embed-
dings for new query samples, for both LE and USC.
We also applied extension 1 with orthogonal projec-
tions, leading to OLPP. When the feature-based ad-
jacency graph in Section 2.3 is used, unsupervised
DR is achieved, leading to the standard LE, USC, and
OLPP; when our multi-label graph is used, supervised
DR is achieved, leading to the supervised extension
of LE, USC, and OLPP denoted as SLE, SUSC, and
SOLPP. We also compare our method with another
unsupervised DR method, latent semantic analysis
(LSI) (Kim et al., 2005), and three existing supervised
DR methods for multi-label classification, includ-
ing canonical correlation analysis (CCA) (Hardoon
et al., 2004), multi-label DR via dependence max-
imization (MDDM) (Zhang and Zhou, 2007), and
multi-output regularized feature projection (MORP)
(Yu et al., 2006). Among these existing methods,
LSI defines an orthogonal projection matrix to en-
able optimal reconstruction by minimizing the error
in terms of ‖X−XPPT‖2

F, LE, USC and OLPP opti-
mizes Eq. (2) using a feature-based weight matrix,
CCA and MDDM maximize the correlation coeffi-
cient and the Hilbert-Schmidt independence criterion
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Table 4: Comparison of the macro F1 score for different methods. The proposed methods are marked by ∗, and (U) denotes
unsupervised, (S) supervised.

Method Raw LSI LE USC OLPP CCA MORP MDDM SLE∗ SUSC∗ SOLPP∗
(U/S) N/A (U) (U) (U) (U) (S) (S) (S) (S) (S) (S)
Reuters F1 0.890 0.828 0.865 0.870 0.891 0.878 0.900 0.900 0.911 0.912 0.909

k 24,012 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800

EPPI F1 0.332 0.387 0.355 0.346 0.424 0.390 0.394 0.385 0.394 0.410 0.457
k 176,624,316 300 100 200 150 500 500 200 100 100 100

between the projected features and the labels, respec-
tively, and MORP minimizes the reconstruction error
of both features and labels.

To obtain the feature-based adjacency graph, two
types of KNN-graph were used, one with the Gaus-
sian kernel weight and the other with constant binary
weight, which were also used as WX to obtain our
multi-label graph. All the model parameters, includ-
ing the number of KNNs, the regularization param-
eter α of out-of-sample extension 2, the parameter
β to control the number of prototypes, the number
of lower-dimensional embeddings k, the degree pa-
rameter θ, and the width parameters of the Gaussian
kernels, were tuned by grid search, using the valida-
tion set for the Reuters data and 3-fold-cross valida-
tion with the training set for the EEP data. To re-
duce the computational complexity of the DR proce-
dure caused by large-scale features, the Euclidean dis-
tance was employed to compute the prototype-based
relation features for the Reuters data, while, the inner-
product for the EEP data.

As support vector machines (SVMs) have shown
success in text categorization (Bennett and Nguyen,
2009), a linear SVM was employed to obtain the
multi-label classification performance of different
types of embeddings. The macro average of the F1
scores of all classes is computed for performance
evaluation and comparison. For each category, the
F1 score is computed by F1 = 2Precision×Recall

Precision+Recall , where
Precision = TP

TP+FP , Recall = TP
TP+FN , TP denotes true

positive, TN denotes true negative, FP denotes false
positive and FN denotes false negative.

4.2 Results and Analysis

Different types of multi-label graph in Section 3.1
were tried for SLE, SUSC and SOLPP, of which per-
formance varies from 0.902 to 0.912 for the Reuters
data, and from 0.387 to 0.457 for the EEP data. It
is observed that the best performance was mostly
achieved with WX defined by the KNN-graph with
the Gaussian kernel weight, and WY computed from
the projected label vectors. We compare our SLE,
SUSC and SOLPP using this best performing multi-
label graph with LE, USC and OLPP using their best
performing feature-based graph (KNN-graph with the
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Figure 1: Performance with respect to the reduced dimen-
sion k for different methods and datasets.

Gaussian kernel weight), respectively, in Table 2 and
Table 3 for both datasets, as well as Figure 1 for differ-
ent values of the resulting dimensionality of embed-
dings. It can be seen from Table 2, Table 3 and Figure
1, our supervised multi-label graph generate embed-
dings with better discriminating power, as compared
with the unsupervsied feature-based graph. We also
show the impact of the tradeoff between the feature
and label structures in Figure 2, for different meth-
ods and datasets. Different optimal values of θ were
reached for different used values of k. Appropriate
combination of the label and feature information can
improve the performance obtained by solely using
one type of information on its own.

We compare the macro F1 scores of our proposed
supervised DR methods with that of four existing un-
supervised DR methods and three existing supervised
DR methods, as well as that of the original features,
denoted as raw features, without applying any DR
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Figure 2: Impact of the tradeoff between the feature and
label structures controlled by θ, for different methods.

method in Table 4. The original CCA and MORP
both impose the orthogonality condition on the em-
beddings. It is noticed in the experiments the original
CCA and MORP performed unsatisfactorily for both
datasets. However, by imposing the orthogonality
condition on the projections instead, the performance
has been greatly improved, which is reported in Table
4. The results show that most supervised DRmethods
perform better than the unsupervised ones in terms
of classification performance. Our proposed meth-
ods provides the highest classification performance
for both datasets (see Table 4).

We also show the show the reduction of computa-
tional cost using the prototype-based relation features,
as compared with the original features. To compute
the embeddings based on Eq. (3) or Eq. (5) for the
EEP data using the original features, one needs to de-
compose or compute the inverse of a 176,624,316×
176,624,316 matrix. This makes it impossible to col-
lect the classification results in a reasonable time. For
the Reuters data, although with comparatively smaller
size of features, it still took long time (more than
7,000 Sec. using MATlAB with computer of 2.8G
CPU and 4.0 GB Memory) to obtain results using the
original features. By using the prototype-based re-
lation features, the computing time of these methods
was greatly reduced to less than 400 Sec. using MAT-
LAB with the same computer, for both datasets.

5 CONCLUSIONS

In this paper, we have developed algorithms for su-
pervised generation of low-dimensional embeddings
with good discriminating ability to facilitate multi-
label classification. This is achieved by modelling
the proximity structure between samples with a multi-
label graph constructed from both feature and multi-
label information. Working in either a binary label
space or a projected real label space, different simi-
larity measures have been used to compute the weight
values of the multi-label graph. By employing the
weighted linear combination of the feature-based and
label-based adjacency graphs, the tradeoff between
the category and feature structures can be adjusted
with a degree parameter. To further reduce the com-
putational cost for classification with a large number
of input features, we seek the optimal projections in
a prototype-based relation feature space, instead of
the original feature space. By incorporating the la-
bel information into the construction of the adjacency
graph, performance of LE, USC, and OLPP has been
improved by 2% to 5% for the Reuters data, and by
7% to 18% for the EEP data. Our current method
is applicable to discrete output value (classes). Re-
search on how to extend this to supervised learning
task with continuous output values, such as regres-
sion, is in procedure. The proposed method is a gen-
eral supervised DR approach for multi-label classi-
fication, which should find more applications in IR,
TM, NLP and bioinformatics.

ACKNOWLEDGEMENTS

This research is supported by Biotechnology and Bi-
ological Sciences Research Council, BBSRC project
BB/G013160/1 and the JISC sponsored National Cen-
tre for Text Mining, University of Manchester, UK.

REFERENCES

Barutcuoglu, Z., Schapire, R. E., and Troyanskaya, O. G.
(2006). Hierarchical multi-label prediction of gene
function. Bioinformatics, 22(7):830–836.

Bekkerman, R., Tishby, N., Winter, Y., Guyon, I., and
Elisseeff, A. (2003). Distributional word clusters vs.
words for text categorization. Journal of Machine
Learning Research, 3:1183–1208.

Belkin, M. and Niyogi, P. (2003). Laplacian eigenmaps
for dimensionality reduction and data representation.
Neural Computation, 15(6):1373–1396.

KDIR 2010 - International Conference on Knowledge Discovery and Information Retrieval

82



Bengio, Y., Paiement, J., Vincent, P., Delalleau, O., Roux,
N. L., and Ouimet, M. (2003). Out-of-sample exten-
sions for LLE, Isomap, MDS, eigenmaps, and spectral
clustering. In Proc. of Neural Information Processing
Systems, NIPS.

Bennett, P. N. and Nguyen, N. (2009). Refined experts:
improving classification in large taxonomies. In Proc.
of the 32nd Int’l ACM SIGIR conference on Research
and development in information retrieval.

Blei, D. M., Ng, A. Y., Jordan, M., and Lafferty, J.
(2003). Latent Dirichlet allocation. Journal of Ma-
chine Learning Research, 3:2003.

Cai, D., He, X., and Han, J. (2007a). Spectral regression:
A unified subspace learning framework for content-
based image retrieval. In Proc. of the ACM Conference
on Multimedia.

Cai, D., He, X., and Han, J. (2007b). Spectral regression
for efficient regularized subspace learning. In Proc. of
the International Conf. on Data Mining, ICDM.

Chan, P. K., Schlag, M. D. F., and Zien, J. Y. (1994). Spec-
tral k-way ratio-cut partitioning and clustering. IEEE
Trans. on Computer-Aided Design of Integrated Cir-
cuits and Systems, 13(9):1088–1096.

Coppersmith, D. and Winograd, S. (1990). Matrix multi-
plication via arithmetic progressions. Journal of Sym-
bolic Computation, 9:251–280.

Deerwester, S., Dumais, S. T., Furnas, G. W., Landauer,
T. K., and Harshman, R. (1990). Indexing by latent
semantic analysis. Journal of the American Society
for Information Science, 41:391–407.

Dhillon, I. S. (2001). Co-clustering documents and words
using bipartite spectral graph partitioning. In Proc. of
the 7th ACM SIGKDD International Conf. on Knowl-
edge discovery and data mining, pages 269–274, San
Francisco, California, US.

Dhillon, I. S., Mallela, S., and Kumar, R. (2003). A division
information-theoretic feature clustering algorithm for
text classification. Journal of Machine Learning Re-
search, 3:1265–1287.

Fisher, R. A. (1936). The use of multiple measurements in
taxonomic problems. Annals of Eugenics, 7(2):179–
188.

Gonzalez, T. F. (1985). Clustering to minimize the maxi-
mum intercluster distance. Theoretical Computer Sci-
ence, 38:23–306.

Hardoon, D. R., Szedmak, S. R., and Shawe-taylor, J. R.
(2004). Canonical correlation analysis: An overview
with application to learning methods. Neural Compu-
tation, 16(12):2639 – 2664.

He, X. (2004). Incremental semi-supervised subspace
learning for image retrieval. In Proc. of the ACM Con-
ference on Multimedia.

He, X. and Niyogi, P. (2003). Locality preserving projec-
tions. In Proc. of Neural Information Processing Sys-
tems 16, NIPS.

He, X., Yan, S., Hu, Y., Niyogi, P., and Zhang, H.
(2005). Face recognition using laplacianfaces. IEEE
Trans. on Pattern Analysis and Machine Intelligence,
27(3):328–340.

HildII, K. E., Erdogmus, D., Torkkola, K., and Principe,
J. C. (2006). Feature extraction using information-
theoretic learning. IEEE Trans. on Pattern Analysis
and Machine Intelligence, 28(9):1385–1392.

Huang, Y., Chiang, C., Shieh, J., and Grimson, W. (2002).
Prototype optimization for nearest-neighbor classifi-
cation. Pattern Recognition, (6):12371245.

Jolliffe, I. T. (1986). Principal Component Analysis.
Springer-Verlag, New York, NY.

Kim, H., Howland, P., and Parl, H. (2005). Dimension
reduction in text classification with support vector
machines. Journal of Machine Learning Research,
6:3753.

Kokiopoulou, E. and Saad, Y. (2007). Orthogonal
neighborhood preserving projections: A projection-
based dimensionality reduction technique. IEEE
Trans. on Pattern Analysis and Machine Intelligence,
29(12):2143–2156.

Kokiopouloua, E. and Saadb, Y. (2009). Enhanced
graph-based dimensionality reduction with repulsion
laplaceans. Pattern Recognition, 42:2392–2402.

Lewis, D. D. (1992). Feature selection and feature extrac-
tion for text categorization. In Proc. of the work-
shop on Speech and Natural Language, pages 212–
217, Harriman, New York.

Li, S., Xia, R., Zong, C., and Huang, C.-R. (2009). A frame-
work of feature selection methods for text categoriza-
tion. In Proc. of the Joint Conf. of the 47th Annual
Meeting of the ACL and the 4th Int’l Joint Conf. on
Natural Language Processing of the AFNLP, pages
692–700, Suntec, Singapore. Association for Compu-
tational Linguistics.

Luxburg, U. (2007). A tutorial on spectral clustering. Statis-
tics and Computing, 17(4).

Mollineda, R. and andE. Vidal, F. F. (2002). An efficient
prototype merging strategy for the condensed 1-nn
rule through class-conditional hierarchical clustering.
Pattern Recognition, (12):27712782.

Pekalska, E. and Duin, R. (2002). Dissimilarity represen-
tations allow for building good classifiers. Pattern
Recognition Letters, (8):943–956.

Pekalska, E., Duin, R., and Paclik, P. (2006). Prototype
selection for dissimilarity-based classifiers. Pattern
Recognition, (2):189–208.

Roweis, S. T. and Saul, L. K. (2000). Nonlinear dimension-
ality reduction by locally linear embedding. Science,
290(5500):2323–2326.

Shi, J. and Malik, J. (2000). Normalized cuts and image
segmentation. IEEE Trans. on Pattern Analysis and
Machine Intelligence, 22(8):888–905.

Steinwart, I. (2001). On the influence of the kernel on the
consistency of support vector machines. Journal of
Machine Learning Research, 2:67–93.

Sugiyama, M. (2007). Dimensionality reduction of multi-
modal labeled data by local fisher discriminant analy-
sis. Journal of Machine Learning Research, 8:1027–
1061.

PROXIMITY-BASED GRAPH EMBEDDINGS FOR MULTI-LABEL CLASSIFICATION

83



Sugiyama, M. (2010). Semi-supervised local fisher discrim-
inant analysis for dimensionality reduction. Machine
Learning, 78(1-2):35–61.

Sun, L., Ji, S., and Ye, J. (2008). Hypergraph spectral
learning for multi-label classification. In Proc. of the
14th ACM SIGKDD International Conf. on Knowl-
edge Discovery and Data Mining, pages 668–676, Las
Vegas, Nevada, USA.

Tang, L., Rajan, S., and Narayanan, V. K. (2009). Large
scale multi-label classification via metalabeler. In
Proc. of 18th Int’l Conf. on World Wide Web.

Wall, M. E., Andreas, R., and Rocha, L. M. (2003). Sin-
gular value decomposition and principal component
analysis. A Practical Approach to Microarray Data
Analysis, pages 91–109.

Yan, S., Xu, D., Zhang, B., Zhang, H., Yang, Q., and Lin,
S. (2007). Graph embedding and extensions: A gen-
eral framework for dimensionality reduction. IEEE
Trans. on Pattern Analysis and Machine Intelligence,
29(1):40–51.

Yu, J. and Tian, Q. (2006). Learning image manifolds by
semantic subspace projection. In Proc. of the ACM
Conference on Multimedia.

Yu, S., Yu, K., Tresp, V., and Kriegel, H. (2006). Multi-
output regularized feature projection. IEEE Trans.
on Knowledge and Data Eigeneering, 18(12):1600–
1613.

Zhang, W., Xue, X., Sun, Z., Guo, Y., and Lu, H. (2007).
Optimal dimensionality of metric space for classifica-
tion. In Proc. of the 24th International Conf. on ma-
chine learning, ICML, volume 227, pages 1135–1142.

Zhang, Y., Surendran, A. C., Platt, J. C., and Narasimhan,
M. (2008). Learning from multitopic web documents
for contextual advertisement. In Proc. of 14th ACM
SIGKDD Int’l Conf. on Knowledge Discovery and
Data Mining.

Zhang, Y. and Zhou, Z. (2007). Multi-label dimensional-
ity reduction via dependence maximization. In Proc.
of the 23rd National Conf. on Artificial intelligence,
volume 3, pages 1503–1505, Chicago, Illinois.

KDIR 2010 - International Conference on Knowledge Discovery and Information Retrieval

84


