
ORIGINAL ARTICLE

Generating Natural Language specifications from UML class
diagrams

Farid Meziane Æ Nikos Athanasakis Æ
Sophia Ananiadou

Received: 26 September 2006 / Accepted: 13 August 2007 / Published online: 25 September 2007

� Springer-Verlag London Limited 2007

Abstract Early phases of software development are

known to be problematic, difficult to manage and errors

occurring during these phases are expensive to correct.

Many systems have been developed to aid the transition

from informal Natural Language requirements to semi-

structured or formal specifications. Furthermore, consis-

tency checking is seen by many software engineers as the

solution to reduce the number of errors occurring during the

software development life cycle and allow early verification

and validation of software systems. However, this is con-

fined to the models developed during analysis and design

and fails to include the early Natural Language require-

ments. This excludes proper user involvement and creates a

gap between the original requirements and the updated and

modified models and implementations of the system. To

improve this process, we propose a system that generates

Natural Language specifications from UML class diagrams.

We first investigate the variation of the input language used

in naming the components of a class diagram based on the

study of a large number of examples from the literature and

then develop rules for removing ambiguities in the subset of

Natural Language used within UML. We use WordNet,

a linguistic ontology, to disambiguate the lexical structures

of the UML string names and generate semantically sound

sentences. Our system is developed in Java and is tested on

an independent though academic case study.

1 Introduction and motivation

1.1 Introduction

The development of a software system starts from a set of

requirements expressed in Natural Language. It is very well

documented that requirements specifications is the most

problematic phase of the software development process [21,

24, 33, 49]. The problems include difficulties in properly

eliciting user requirements, understanding them and then

transforming these requirements into a computer model that

can be semi-formal, usually refereed to graphical notation

such as Object-Oriented (OO) models [9] using the Unified

Modelling Language (UML) [10, 55] or formal using formal

specifications languages such as VDM [37] or Z [66]. Errors

made during the early phases of software development

(requirements and specifications) propagate to all remaining

phases making them the most expensive to correct particu-

larly if identified only during the implementation phase or

after system delivery [50]. The diversity of the stakeholders,

informality in the requirements process and contradictions

and inconsistencies have been often cited [49, 58] as the

reasons behind these errors. Early correction of errors in the

life cycle may drastically decrease the overall software

development cost and reduce the amount of changes during

the maintenance phase [30].

Most modern software development methodologies

advocate iteration as the best way to reduce errors and

F. Meziane (&) � N. Athanasakis

Informatics Research Institute, Newton Building,

University of Salford, Salford M5 4WT, UK

e-mail: f.meziane@salford.ac.uk

N. Athanasakis

e-mail: athanikos79@yahoo.gr

S. Ananiadou

School of Computer Science,

National Centre for Text Mining,

University of Manchester,

131 Princess St, Manchester M1 7DN, UK

e-mail: sophia.ananiadou@manchester.ac.uk

123

Requirements Eng (2008) 13:1–18

DOI 10.1007/s00766-007-0054-0

enforce consistency checking. However, none provide

details on how consistency between intermediate devel-

opment steps can be achieved. Even if the model itself

supports iteration, it is not guaranteed that mapping from

source code back to the design notation will be performed

because software engineers ignore the design notation

when the project has reached the maintenance phase. For

this reason, early work on requirements analysis focused on

the organization of specifications, consistency checking

and preparation of the requirements as well as on

requirements elicitation [31]. Most recent work [5, 56]

focused on automated consistency checking [34] by pro-

viding a framework, which processes Natural Language

requirements and generates concrete views of models,

including UML. Moreover, with the introduction of a

variety of software tools (Pyut, http://pyut.sourceforge.net;

Rational Rose, http://www-306.ibm.com/software/rational)

the transformation from source code into UML can be

accomplished in a computerized manner. However, con-

sistency checking does not guarantee that there will be no

changes at the later stages of the project. In fact 40% of the

errors originate at the later stages of the life cycle and do

not correlate with requirements gathering and systems

specifications stages [21]. In addition, requirements tend to

evolve over time [21] because stakeholders change their

minds [29] or they are unable to understand the client’s

needs [30] or they are constrained by a variety of external

factors outside of their control [53].

1.2 Motivation

Given that late changes are more likely to occur even if

consistency checking has been performed, we should

consider how these modifications should be accommo-

dated. First, it should be noted that late changes in the

software life cycle often originate in the source code, thus

they are first implemented in the source code and are then

reflected in the design notation and systems specifications.

Despite most of the textbooks’ suggestions that changes

should start at the highest level and work their way down to

the source code [24], in most cases this is not feasible due

to the expensiveness of this approach over its reverse

[67]. Therefore, systems enabling automated consistency

checking in a forward manner (from systems specifications

to notation to source code) are useless at the later stages of

the life cycle since ‘‘most of the detailed decisions col-

lectively forming the behaviour of a system needs to be

specified using a programming language’’ [67].

To be able to visualize implementation changes, we

should provide a tool that enables backwards transformation

(from source code to notation to systems specifications). As

previously mentioned source code to notation transforma-

tion is achievable by various CASE Tools (Pyut, http://

pyut.sourceforge.net; Rational Rose, http://www-306.ibm.

com/software/rational), which generate C++ or Java code

from UML and vice versa. With regards to systems that

attempt to generate software specifications from design,

there is relatively little research. These systems lack domain

independence because they either assume a domain analysis

prior to execution [22], or they do not perform domain

analysis but do not guarantee that the generated text makes

sense [40]. Although it has been widely recognised [14, 36]

that users should be involved in the early stages of software

development and that Natural Language (NL) is undeniably

the best medium of communication and understanding

between software engineers and users, little work has been

done in validating the software models in a way users can

understand them. In this paper, we present the GeNLan-

gUML (Generating Natural Language from UML) system,

which generates English specifications from UML class

diagrams. The main goal of this research is to translate UML

version 1.5 [55] class diagrams into NL, English in this case.

Our motivation is to link the two specifications and provide

users with two different views of the system specification at

any time. There are two main benefits in the development of

such a system:

1. Tools developed for automatic consistency checking

between UML class diagrams (and other models) and

the original requirements developed in NL increase

user involvement in the verifications and validation

process.

2. The automatic production of NL requirements for

software maintenance purposes. It has been widely

recognized that very often, system implementations

are not consistent with the documentation as software

developers usually omit to update the analysis and

design models let alone the original NL requirements

when they modify the implementation [2, p. 17, 41, 47]

1.3 Research scope and limitations

A complete OO systems analysis and designs using UML

will include various models. Typically they start with a set

of uses cases and will be followed by the development of a

class diagram, interaction diagrams (sequence and collab-

oration) and state diagrams. Functions will then be

specified using activity diagrams, formal specifications

such as the Object Constraints Language (OCL) [68],

decision tree or just NL. An ideal system to generate NL

2 Requirements Eng (2008) 13:1–18

123

http://pyut.sourceforge.net
http://www-306.ibm.com/software/rational
http://pyut.sourceforge.net
http://pyut.sourceforge.net
http://www-306.ibm.com/software/rational
http://www-306.ibm.com/software/rational

specifications from OO models would include all these

models and specifications. However, in the research

reported in this paper, we only concentrate on class dia-

grams for many reasons, which include:

• Little work is done in translating class diagram models

into NL specifications.

• Class diagrams are the backbone of OO analysis and

design systems and most other models are derived

from class diagrams. They contain most of the infor-

mation, although not in details, needed in systems’

specifications.

• Use case diagrams are ignored at this stage because

they contain descriptions that are mainly written in NL

and hence will not require a lot of generation and are

much easier to understand by users.

• The information contained in interaction diagrams and

state diagrams are much related to the operations

contained in the class diagrams. They are mainly used

to show how objects interact and collaborate and also

how they transit from one state to another. The detailed

description of the operation is given in their specifica-

tions. Some more mature research is already published

in generating NL specifications from OCL [68]. This

will be described in the related work section.

The research developed so far and reported in this paper is

purely academic. All case studies used to understand how

UML class diagrams are developed and the naming

conventions are taken from text books, usually used for

teaching, as is the case study used to evaluate our system.

These models are developed by experienced academics,

some with good industrial experience but we do not have

any detailed information with regards to their background

and experience. As we did not survey case studies

developed in an industrial environment.

The remaining of the paper is organized as follows. In

Sect. 2, we review some related work and in Sect. 3 we

present the results of a study on how software developers

name the various components of UML class diagrams.

Subsequently, rules are defined and used to disambiguate

ambiguous names. In Sect. 4, we describe the various

components of the specification generation system. A case

study that is used to evaluate our system is presented in

Sect. 5 and we conclude in Sect. 6.

2 Related work

In this section, we review some research that is related to

the GeNLangUML system. We first review some NL

generation systems to justify the choice of our approach

with regards to the NL generation system. This is then

followed by the review of systems that attempted to

generate OO specifications from NL and finally those

systems that attempts to generate NL specifications from

software models.

2.1 Natural Language Generation (NLG) systems

Simple approaches to NLG are canned text and template

filling. The latter approach generates text by filling a set of

predefined templates, such as S ? N, V, N, which means

that a sentence (S) is composed of a noun (N), followed by

a verb (V) and a noun (N). Canned text generation is rather

simple given that sentences are generated without any use

of grammar rules. The success of these approaches is

limited to quite restricted domain applications. More

sophisticated NLG approaches, with a quite wider input

variation, fall into three distinct categories depending on

the input they deal with [57]:

1. An existing knowledge or database or by some other

linguistic input. The generator performs selection of

content and discourse structure and then sentence level

transformations and surface generation are applied.

2. A ‘‘real user’’. The system interacts using an authoring

tool with the user to acquire suitable input for the

generation process.

3. Hand-crafted data in a language written by system

developers. Where an application has been written for

accepting an input of a certain format and generation is

performed assuming the characteristics of that partic-

ular input.

Conventional NLG systems employ the following ordered

steps to reach their final goal [60]:

1. Content determination and text planning: the meaning

to be conveyed and its structure.

2. Sentence planning: deals with aggregation, lexicaliza-

tion and referring expressions generation.

3. Surface realization: determines the syntactic structure

of the final sentence, by applying morphological,

orthographical and syntactical rules.

There are two approaches for content determination, the

deep reasoning approach and the domain specific approach.

Systems employing the deep reasoning approach rely on

the design of a set of plans where content determination is

achieved by using the correct plan for the input structure

[51, 66]. Systems employing domain specific approaches

include a set of rules thus requiring less time to develop

and can be very effective in constrained domains [17, 30,

48, 59]. Deep reasoning approaches are domain indepen-

dent and expensive. It is worth mentioning that some NLG

systems do not employ any sophisticated content determi-

nation techniques because they assume an interaction with

Requirements Eng (2008) 13:1–18 3

123

the user where the appropriate concepts are specified while

the input to the system is entered [16, 40].

Aggregation’s main goal is to combine structures toge-

ther so that the resulted output will be more readable. In

addition, it concerns with the removal of redundant infor-

mation without losing structures that add meaning to the

output language. Horacek [35] distinguishes three different

types of aggregation: content-based, structurally based

through syntax and structurally based through quantifica-

tion. Content-based aggregation requires the access to a

rich knowledge base from which structures can be assigned

a meaning, which are then combined together to form a

more concise structure. Syntactic aggregation is performed

by processing the syntactic attributes of the structures.

Structurally based aggregation through quantification

combines information without referring to lexical knowl-

edge. Horacek [35] points out that only structurally based

aggregation through grammar does not result into loss of

information in contrast to content-based and structurally

based aggregation trough quantification where information

is more likely to be lost. He then points out that a balance

of conciseness and accuracy should be achieved. Early

efforts on aggregation have employed simple logic to

combine structures without using lexical information, thus

only direct inferable and simple structures were aggregated

[35, 45]. More sophisticated approaches have taken into

account syntactic constituents such as subject, verb and

object [22, 64].

In the realization component, the structures from the

sentence planner are assigned a grammatical knowledge.

The realization component is responsible for ensuring

agreement between words in a structure, pronominalisation

and lexical selection, given that attributes of words (tense,

plurality or singularity, etc.) have been specified from the

sentence planner. For the GeNLangUML system, we use a

template based realizer because it does not utilize any

sophisticated grammar formalism, due to the restricted

variation of the input language. In these cases morphology

is easy to perform and the corresponding rules are hard-

coded in the application. Syntactic processing is rare

because, the syntax to be used for a given structure is

specified by a template earlier in the architecture.

2.2 Modelling from Natural Language specifications

The linkage between the linguistics field and software

modelling goes back as far as the late seventies when Chen

[18, 19] provided some heuristics to identify the compo-

nents of the Entity Relationship Model. He suggested that

common nouns yield entity types, transitive verbs rela-

tionship types and adverbs attributes for relationships. This

was followed by suggestions by Abbott [1] that programs

can be designed from NL descriptions. He proposed

assigning nouns to classes, verbs to methods and adjectives

to attributes. These concepts were then followed and used

in many OO methods [6, 8] were it is widely accepted that

classes and attributes are nouns or noun phrases and

operations and relationships are better described by verbs

and verb phrases.

Many systems have been developed to support the

transition from NL requirements to semi-formal [28, 38,

52] or formal specifications [20, 39]. In general, the

developments of these systems have adopted two approa-

ches [33]. The first approach is based on applying general

Artificial Intelligence (AI) techniques such as schema-

based reasoning and search strategies, to provide intelligent

tools. This approach claims that analysis and design are

very knowledge intensive activities, and should be sup-

ported by AI based tools. The second approach is based on

NL. This approach realises the fact that most of the data

available to software engineers interested in analysing

software requirements is expressed in NL where linguistic

analysis can be used in the early stages of requirement

analysis.

AI based approaches assume in general that an expert

system could use its knowledge to ask users key questions,

cope with the initial statement of the vague, badly organ-

ised and contradictory requirements, summarise (i.e.

paraphrase) current information for the user to review. It

can also prompt for missing information, criticise the

developing requirements (from a semantic and syntactic

viewpoint), organise collected requirements, and create

requirements specification documents in requested formats

on demand. Among the AI based systems is the IDeA

(Intelligent Design Aid) system [43], which was built

around a knowledge base design schemas. IDeA captures

the domain knowledge and stores it in IDeA’s knowledge

base as abstract design schemas, essentially dataflow dia-

grams with inputs and outputs defined in terms of domain

oriented data types and properties. The analyst obtains

requirements for an application in the domain, expresses

them in an unrefined requirements specification document

in terms of the predefined system inputs, outputs and

functions, and then inputs the specification to IdeA, which

automatically selects the abstract design schema which best

matches the unrefined requirements specification. Mis-

matches between the specification and the abstract design

schema are identified by IDeA and placed on an issue list

for later resolution by the analyst. The FORSEN (FORmal

Specifications from ENglish) system [49] attempts to pro-

duce formal specifications by processing NL (English)

specifications. The system attempts to assign a unique

structure to each sentence and whenever there is more than

one candidate structure the user is asked to select the

correct one. The formal specifications are produced in the

4 Requirements Eng (2008) 13:1–18

123

Vienna Development Method (VDM). Nouns are used to

identify entities and verbs relationships. Quantification and

determination of the degree of relationships plays a major

role in this research.

NL based systems include the NL-OOPS (Natural Lan-

guage-Object-Oriented Production System) [50], a CASE

tool that supports requirements analysis by generating OO

models from NL requirements documents. The system

demonstrated how a large-scale system called LOLITA

(Large-scale, Object-based, Linguistic Interactor, Transla-

tor, and Analyser) is used to support the OO analysis stage.

Saeki et al. [62] described a process of incrementally

constructing software modules from OO specifications

obtained from informal NL requirements. Nouns and verbs

were automatically extracted from informal requirements

but the system could not determine which words are

important for the construction of the formal specification.

Hence an important role is played by human analyst. Dunn

and Orlowska [25] described a NL interpreter for the

construction of NIAM (Nijseen’s Information Analysis

Method; also known as Natural-Language Information

Analysis Method) conceptual schemas. The construction of

conceptual schemas involves allocating surface objects to

entity types (semantic classes) and the identification of

elementary fact types. The system accepts declarative

sentences only and uses grammar rules and a dictionary for

type allocation and the identification of elementary fact

types. A good review and comparison of these systems can

be found in [6, 32].

2.3 Generating Natural Language from software

specifications

In this section, we shall describe two systems. The ModEx

system that attempted to achieve the same objectives as our

work in generating NL specifications from OO models and

the part of the KeY project [4] that generates NL specifi-

cations from OCL [68]. The latter can be seen as a

complement to our work.

The ModEx (Model Explainer) system [40] generates

NL from the description of OO software models. Its

architecture is composed of a text planner, a sentence

planner, a realizer and a formatter. The user interacts with

the system by selecting a class or relationship of the model

to draw and the interaction goes on until the whole model

has been drawn. The text planner selects a plan based on

the user’s input. This plan specifies the structure of the

output, which is fed to the sentence planner. The sentence

planner performs aggregation and insertion of cue words

and transforms the text into a lexicalized deep-syntactic

tree representation (DSyntR) [61]. The DSyntR is then fed

to the realizer, which transforms it to a surface morpho-

syntactic representation (SMorphS). In the realising pro-

cess, the trees from DSyntR are linearised and the

morphemes in DsyntR are infected by using the lexicon

contents or by applying a default infection mechanism.

Also, the realizer inserts annotations to notify the for-

matter, which words are going to be highlighted. The

highlighted words can then be associated with examples,

and insertion of examples occurs whenever the user clicks

on an underlined word. For instance, in the sentence ‘‘A

section must be taught by exactly one professor’’, ‘‘sec-

tion’’ can be associated with example ‘‘Sect1 is a section’’.

ModEx does not semantically verify the final output.

Furthermore, ModEx assumes that meaning verification is

done by the user by comparing the diagram with the

system specifications generated. This simplifies the overall

architecture of the system and at the same time makes it

extensible to any domain of application. In fact the

authors [40] state ‘‘it lacks domain knowledge. This

means that the system is fully portable between modelling

domains and is not overly costly in use’’. ModEx expects

classes to be singular nouns and relationships to be active

verbs, passive verbs or nouns. Overall, the system per-

forms successfully for models, which comply with the

assumptions for how classes and relationships should be

named. However, as the author notes ‘‘this also means that

the system cannot detect semantically modelling errors’’.

Semantically incorrect sentences are more likely to be

generated due to the absence of a meaning verification

mechanism. It is the user’s responsibility to compare the

diagram with the generated text, to check for semantic

agreement between the two, otherwise the system’s output

language will be nonsensical. Our work has extended on

ModEx capabilities by first considering wider naming

convention for the components of the class diagram by

conducting a study on the naming conventions. We then

used WordNet to validate the semantic correctness of the

generated sentences.

Part of the KeY project is to automatically translate for-

mal software specifications into NL [14, 15, 36]. The system

is built around the Grammar Framework (GF), a formalism

for defining grammars. A GF grammar consists of one part,

which describes abstract syntax, and another part which

describes concrete syntax [14]. The abstract syntax part is

formulated in a version of Martin-Löf’s type theory [46], and

can be seen as a description of how to construct abstract

syntax trees. The concrete syntax then consists of lineari-

zation rules telling how to present these trees as expressions

of a particular language [16]. To translate OCL to NL, the

OCL specifications are first input to an OCL parser. The

parser has been derived based on a context-free grammar of

OCL [14]. Using this parser, a syntax tree in the context-free

OCL grammar can be produced for a given OCL specifica-

tion. This tree is then fed into an OCL type checker/

Requirements Eng (2008) 13:1–18 5

123

annotator together with a file containing information about

the UML class diagram, which adds a lot of type annotations

and other disambiguating annotations [14]. The generated

parts of the grammar are derived from the UML model, and

consist of default rules for the generation of the user-defined

entities of the model. The work is very domain specific and a

CF is created for each specification. However, the results

produced are good. Similar to our work, other UML dia-

grams such as the interaction diagrams, state diagrams and

activity diagrams are not used.

3 Understanding and interpreting UML class diagrams

A class is the basic element of an OO class diagram. There

are many levels of detail that can be shown when devel-

oping a class depending on which phase the class is

developed for. For example, more details are shown during

the design then the analysis phase. A class diagram is a

collection of classes interconnected by a list of rela-

tionships, which can be associations, aggregations or

generalizations. The number of objects involved in a

relationship is known as its multiplicity and is represented

as an integer or a ‘‘*’’ to denote many or a pair of integers

to represent a range of values.

To understand how UML users name these components,

we examined 45 class diagrams from the OO literature,

mainly text books that include [2, 3, 7, 8, 11, 13, 42, 44].

This might be too restrictive and may differ from the

standards used in the industry. However, for an academic

study, we believe that this is an acceptable sample. We

observed the following:

• The language used in UML, is a controlled subset of

NL. A sentence S represents a class name, sometime

including a stereotype, an attribute, an operation or a

relationship name and will be described in terms of its

syntactic components. Only nouns (N), verbs (V),

adjectives (A) and prepositions (P) are used in naming

the different components of the class diagram. For

example S ? N, V denotes that the sentence S is

composed of a noun (N) followed by a verb (V). This

notation will be used in this paper.

• In the surveyed literature, software developers often use

Java conventions to name the various components of a

class diagram. Details will be provided in the next

subsections.

3.1 UML class naming conventions and tagging

‘‘A class name may be text consisting of any number of

letters, numbers, and certain punctuation marks and may

continue over several lines. In practice, class names are

short nouns or noun phrases drawn from the vocabulary of

the system you are modelling. Typically, you capitalise the

first letter of every word in a class name’’ [10, p. 50]. These

principles have been confirmed by our study and we did

find that the language used for naming Classes in UML is

as summarised in Table 1. The names given to classes are

either a noun (N), a pair of nouns (NN) or a sequence of

three nouns (NNN). These represent 97% of all the names

surveyed in this study. An exception to these rules is an

Adjective followed by a noun (AN), which is found is

nearly 3% of the surveyed class names.

Ambiguous words in class names are always assigned a

noun as part of speech (PoS) tag if a Noun is a candidate

tag otherwise an adjective is used. Class names are used in

our system for generating simple sentences of the form

\Class Name[\Association[\Class Name[. Class

names are treated and tokenized as noun phases and

checked if they are valid to perform an action described by

the association’s verb or to be performed by this action.

At the detailed or implementation level, ‘‘an optional

stereotype keyword may be placed above the class name

within guillemets’’ [55]. If a class is abstract for example,

we may place the stereotype {abstract} next to it. Other

stereotypes that can be used in class naming include the

class types such as ‘‘control’’, ‘‘entity’’ and ‘‘boundary’’

[8]. When we generate NL specifications, we mainly take

into account ‘‘entity’’ classes as they are the ones that

contain the information about the system being developed.

Control classes play mainly a role of requesting services

and return the result to the calling classes and boundary

classes are used to show the interactions between the users

and the system.

3.2 UML relationships naming conventions

and tagging

The language used for naming relationships in UML is

given in Table 2. Associations are in most cases composed

of a single verb in third person singular (V) or the verb is

followed by a preposition (VP). However, we found that

sometimes the verb is followed by a noun (VN), a prepo-

sition and a noun (VPN) or a preposition and a verb (VPV).

Ambiguous words in relationship names are always

Table 1 Distribution of Class naming in UML class diagrams

String structure N NN NNN AN

Number of occurrences 202 178 35 10

Percentage of occurrences (%) 47.3 41.7 8.2 2.8

Cumulative distribution (%) 47.3 89 97.2 100

6 Requirements Eng (2008) 13:1–18

123

assigned a Verb as PoS tag if a Verb and a Noun are

candidate tags and if the element is in the first position of

the string name. If the element is in the second position,

then it is assigned a Noun PoS. The verb is used in the

generation process to verify that certain noun phrases are

allowed to perform or performed by the action described by

the verb.

The multiplicity of the relationships is used to associate

articles to the generated noun phrases and these are based

on Meziane’s work [49]. This is summarised in Table 3

where a = {1,2,...,n, *}, b = {1,2,...,m, *}, n and m are

natural numbers and ‘‘pl’’ and ‘‘sg’’ stands for plural and

singular, respectively.

3.3 UML class attributes naming conventions

and tagging

‘‘An attribute name may be text, just like a class name. In

practice, an attribute name is a short noun or noun phrase

that represents some property of its enclosing class. Typi-

cally, you capitalise the first letter of every word in an

attribute name except the first letter’’ [10, p. 50]. These

principles are again verified by our study. The most fre-

quently used strings for naming attributes in UML class

diagrams are shown in Table 4. As it can be observed,

nouns are frequently used and 85% of the strings are single

nouns (N), pair of nouns (NN), triplets of nouns (NNN) or a

noun preceded by an adjective (AN). Verbs are rarely used

and if used, they are in the past tense. Only the verb ‘‘be’’ is

found to be used in some cases in the present tense and

only in the first position of verb–adjective (VA) strings and

they usually denote attributes of type Boolean, such as the

attribute ‘‘isElligible’’. However, there is less then 1% of

such occurrences. We also noted that verbs can occur in

any position of the string where they appear; however, they

occur in the first position in 94% of the strings. Other

naming strings for attributes which percentage of occur-

rences is less then 1% include strings of the form

adjective–noun–noun (ANN), noun–preposition–noun

(NPN), verb–noun–adjective (VNA), verb–noun–noun

(VNN) and verb–preposition–verb (VPV).

The following are some examples of attributes and their

parsing structures: cost (N), timeCompleted (NV), over-

allCost (AN), completionDateSet (NNV). Most of these

strings are ambiguous, i.e. ‘‘completionDateSet’’ is

ambiguous since ‘‘date’’ may be a verb or a noun, and

‘‘Set’’ may be a verb or a noun. Based on the identified

strings used for naming class attributes, we developed the

following rules:

A1. If an element is ambiguous and the string size is 1

then assign the ambiguous word the PoS tag:

(a) Verb if candidate tag is a verb in the past tense

(b) Noun otherwise

A2. If the last element is ambiguous, assign the ambig-

uous word the PoS tag:

(a) Verb, if candidate tags are a verb in past tense

and an adjective.

(b) Noun, if candidate tags are a noun and a verb in

present tense or a noun and an adjective.

A3. If an element is ambiguous and the next element is a

verb, assign the ambiguous word the PoS tag noun.

A4. If a candidate tag is an adjective or verb in the past

then select adjective

A5. If an element is ambiguous and the previous element

is an adjective, then select a noun.

A6. If an element is ambiguous and candidate tags are a

noun and a verb in the present tense, then select a

noun.

Based on these rules we can show how ambiguous

strings are uniquely interpreted. For example the string

‘‘campaignStartDate’’ has eight possible interpretations:

NNN, VNN, NVN, NNV, VVN, VNV, NVV and VVV. By

using rules A2 and A6 respectively, the string is disam-

biguated and is interpreted as NNN.

Table 2 Distribution of relationship naming in UML class diagrams

String structure V VP VPN VN VPV

Number of occurrences 110 31 6 5 3

Percentage of occurrences (%) 66.7 18.8 3.7 3 1.8

Cumulative distribution (%) 66.7 85.5 89.2 92.2 94

Table 3 Translating cardinalities into articles

Form Values Translation

a a = 1 The + sg

a = 2,3,…,n Two, three,…, many + pl

a = * Many + pl

a…b a = 1,2,…,n b = * a = One, two,…,n b = many + pl

a = 2,3,…,n b = a + 1,

a + 2,…,m
a = Two, three,…,n b = three,

four, m + pl

Table 4 Distribution of class attributes naming in UML class

diagrams

String structure N NN AN NNN NV VA NNNN

Number of occurrences 504 402 168 111 50 48 41

Percentage of

occurrences (%)

36.5 29.1 12.1 8 3.6 3.5 3

Cumulative

distribution (%)

36.5 65.6 77.7 85 88.6 92.1 95.1

Requirements Eng (2008) 13:1–18 7

123

3.4 UML class operations naming conventions

and tagging

‘‘An operation name may be text, just like a class name. In

practice, an operation name is a short verb or verb phrase

that represents some behaviour of its enclosing class.

Typically, you capitalize the first letter of every word in an

operation name except the first letter.’’ [10, p. 51]. These

recommendations are correct and the most frequently used

strings for naming operations in UML class diagrams are

shown in Table 5. More then 84% of the strings are V, VN

and VNN forms. Verbs are always in present tense. We did

not come across verbs in the past tense. In addition, verbs

are in 98% of the cases in the first position. Other naming

strings for operations which percentage of occurrences is

less then 1% include strings of the form NA, VNA, VANN,

NPN and VAPV.

From the analysis we have presented we assume the

following facts about the language used in naming UML

operations:

1. Verbs are used in present or past tense.

2. Verbs in the present tense may appear in the first

position only.

3. Verbs in the past tense may appear at any position

except the first with the exception of a string of size 1.

The following are some examples of operation names with

their parsing structures: archiveCampaign (VN), getOver-

allCost (VAN), removeBreakPlan (VNN), setCampaign-

Active (VNA), computeCampaignCostEstimated (VNNA).

Most of these strings are ambiguous since they have more

than one candidate syntactic structure. For example, the

string ‘‘computeCampaignCostEstimated’’ is ambiguous

because ‘‘Campaign’’ can be interpreted as a verb or as a

noun, ‘‘Cost’’ may be interpreted as a verb or as a noun and

‘‘Estimated’’ may be interpreted as an adjective or as a

noun. The following rules have been defined for naming

operations.

O1. If ambiguous, the first element is always a verb.

O2. If last element is ambiguous, then it is a Noun if the

String’s size is 2, 5 or 6.

O3. If an element is ambiguous and its successor is a

preposition, then it is a noun.

O4. If candidate tag is an adjective or a verb in the past

then select an adjective.

O5. If an element is ambiguous and its predecessor is an

adjective, then select a noun.

O6. If element is ambiguous and candidate tags are a

noun and a verb in present tense then select a noun.

Based on these rules we show how ambiguous strings are

uniquely interpreted. For example the string ‘‘archiveCam-

paign’’ has four possible interpretations: VN, NV, VV and

NN. By using rules O1 and O2 respectively, the string is

disambiguated and is interpreted as VN.

4 Generating Natural Language specifications

The Architecture of the GeNLangUML system is sum-

marised in Fig. 1. The Natural Language generation

process is composed of four components, the pre-processor

and tagger, the sentence planner, the realizer and the

document structurer. The full specification and design of

Table 5 Distribution of class operations naming in UML class diagrams

String Structure VN VNN V VAN VA VPN VV VNPN AN

Number of Occurrences 930 181 92 43 33 31 24 22 21

Percentage of Occurrences 65.3 12.7 6.5 3 2.3 2.2 1.7 1.5 1.5

Cumulative (%) 65.3 78 84.5 87.5 89.8 92 93.7 95.2 96.7

Generation
from Attributes

Generation
from Operations

Generation
From Operations

Pre-
Processing
and Tagger

Sentence
Planner Realizer

Document
Structurer

Semantics

WordNet
Lexicon

WordNet
Semantics

NL
Specifications

UML Class
Diagram
Interface

Fig. 1 The GeNLangUML

system’s architecture

8 Requirements Eng (2008) 13:1–18

123

the GeNLangUML system is described in [6]. The fol-

lowing sections describe each of these components.

4.1 The UML class diagram interface

The inputs to the system are UML class diagrams. A tool

for drawing the components of an UML class diagram was

developed and supports the following five menus: File,

Draw, Move, Edit and Delete. The file menu is used for

saving and loading a project. The draw menu enables users

to draw the components of a class diagram and includes

tools to draw classes and objects, class attributes, class

operations and the relationships between classes. The move

menu allows users to move classes and relationships within

the drawing area. The edit menu is used for editing and

updating the class diagram components. The delete menu

allows the deletion of class diagram components.

We use XML as the internal representation for the UML

class diagrams. Each class diagram is saved using two files.

One file to store the classes, their attributes and operations

and the other file is used to store the relationships between

classes.

4.2 Pre-processing and tagging

Ambiguity in NL has been a major problem in NL pro-

cessing. An input is ambiguous if there are multiple

alternate linguistic structures that can be built for it. A NL

processing system should always select a part-of speech

(PoS) for a given input. The mechanism for assigning a

PoS or other lexical class marker is known as tagging.

Restriction of the input language may result into fewer

ambiguities as the input’s variation is limited. Controlled

languages [23, 63] have been in wide use in the last dec-

ades and have bin Machine Translation Systems [54] and

helped to reduce the amount of ambiguities in domain-

specific applications [29]. The introduction of controlled

languages serves as a justification to our research that a

subset of NL will be less ambiguous than the whole NL,

allowing us to successfully resolve ambiguous strings

without applying a sophisticated tagger.

A simple algorithm for tagging will be to choose the

interpretation that occurs most frequently in the training set

and this is shown to achieve 90% success [26] when half of

the words in the corpus used, are not ambiguous. We

should wonder what will happen if more than half of the

words are ambiguous in a given corpus. The authors in [26]

suggest that we could probabilistically derive the tag for an

ambiguous word given the previous word’s tag, this model

is also known as the bigram model. We could also look at

the two previous tags, and this is known as the trigram

model, to derive the word’s tag. For instance in the sen-

tence ‘‘I am going to fly to Athens tomorrow’’, we could

ask, what is the probability of a fly being a verb with the

previous word (to) being a preposition. Clearly, if the

probability of a verb being the PoS tag is the highest then

the system will have made the right choice. These types of

taggers are known as probabilistic taggers.

Similarly we could use a set of rules to disambiguate

PoS and these are known as rule based taggers. A rule

based PoS tagger suggests the creation of a set of condi-

tions that will limit the chances of having a word being

ambiguous. A rule-based tagger will be composed of a set

of rules. For instance, for the sentence ‘‘I am going to fly

tomorrow’’ an example of rule to resolve the ambiguous

word ‘‘fly’’ will be as follows:

‘‘If a word is ambiguous and the previous word is a

preposition then select a verb.’’

Another category of taggers, is the transformation-based

taggers. In contrast with probabilistic taggers, in the

transformation-based taggers each word has a set of

possible tags that can occur, with the most probable tag

highlighted. A set of rules such as ‘‘Change tag to B if

previous is A’’ is also defined. Brill’s [12] tagger is an

example of transformation-based taggers, and its accuracy

is around 95%. Brill also suggested a mechanism for

deriving tags for unseen words (words that were not found

in the lexicon).

Overall, probabilistic taggers may produce better

results from rule based but probabilistic taggers are

indirectly referring to linguistic information via the access

of probability tables [12]. Rule based taggers require time

for the design of the rules, but they do not require any

tables or corpus or training and could perform quite well

in specific domains where linguistic input is constrained.

In cases, where an appropriate corpus is difficult to find or

training is difficult to perform then a rule based tagger is

the right choice and this is the rational for adopting a rule

based tagger for our system. In addition, it is impossible

to use probabilistic and transformation-based taggers as

they are based on documents that obey NL grammar

rules. Any tagging mechanism based on NL documents

will be invalid since UML class diagrams grammar rules

are different.

4.3 The sentence planner

The sentence planner component receives the tags and the

corresponding words from the tagger and generates sen-

tences following a template based approach where

sentences are generated from combining words in attri-

butes, operations, classes and associations names as

Requirements Eng (2008) 13:1–18 9

123

described in the following subsections. The general

approach is given in Fig. 2.

4.3.1 Generating from attributes

For all attributes within a given object the following three

routines are applied:

4.3.1.1 Formation of ‘‘has’’ sentences (‘‘object name’’ has

‘‘attribute’’) The generator tokenizes the object name and

the attributes, which are expected to be Noun Phrases

(sometimes represented as simple nouns). Then the two

Noun Phrases (the object name and attribute name) form a

sentence with the verb ‘‘has’’ being the main verb. In

Fig. 3a, ‘‘Campaign’’ and ‘‘overallCost’’ will generate

‘‘Campaign has an overall cost’’. This rule always involves

the use of the class name as the subject of the verb and

covers attributes of the form N, NN, NNN, NNNN and AN.

4.3.1.2 Formation from verbs at first position (‘‘verb’’

‘‘right Noun Phrase’’ or ‘‘object name’’) This routine is

applied whenever an attribute has a verb in its first position.

A verb refers to the Noun Phrase on the right or to the

object name if there is no Noun Phrase. The routine

combines the verb and the right Noun Phrase or the object

name to form a sentence. In Fig. 3b, ‘‘Campaign’’ and

‘‘completed’’ will generate ‘‘complete campaign’’. This

rule involves the use of the class name and covers attributes

of the form VA.

4.3.1.3 Generating from verbs elsewhere (‘‘verb’’ ‘‘right

Noun Phrase’’ or ‘‘left Noun Phrase’’) This routine tok-

enizes the verb and proceeds by examining whether there is

a Noun Phrase to the right of the verb and if it exists it

tokenizes it. If there is no Noun Phrase to the right of the

verb the routine examines whether a Noun Phrase is on the

left of the verb and if it exists it tokenizes it. Then a sen-

tence is formed with the verb and the right or the left Noun

Phrase. In Fig. 3c, the sentence ‘‘estimate cost’’ will be

generated. This rule usually does not involve the use of the

class name and covers attributes of the form NV.

4.3.2 Generating from operations

The following routines are applied to the class operations

for sentence generation:

4.3.2.1 Generating a sentence from a verb in the first

position (verb object name) The generator checks whe-

ther there is a Noun Phrase to the right of the verb, if there

is it combines the two together otherwise it combines the

verb with the object name. In Fig. 4a the sentence ‘‘vali-

date campaign’’ is generated. This is usually used with

operations having the structure V, VN, VNN, VPN, etc.

4.3.2.2 Generating from verb elsewhere (‘‘verb’’ ‘‘right

Noun Phrase’’ or ‘‘left Noun Phrase’’) This routine tok-

enizes the verb (not in the first position) and proceeds by

examining whether there is a Noun Phrase to the right of

the verb and if it exists it tokenizes it otherwise the routine

examines whether there is a Noun Phrase to the left of the

verb and if there is, it tokenizes it. Then a sentence is

formed with the verb and the right or the left Non Phrase.

In Fig. 4b the following sentence is generated ‘‘add cost

estimated’’. This rule is usually used with operations hav-

ing the structures VV, VNV, AV, etc.

4.3.2.3 Planning from all words in operations This rou-

tine uses all words in an operation name. It expects a verb

in the first position, and it checks whether a preposition

follows immediately after the verb. If the condition is true,

it adds the object name after the verb and then the rest of

For all classes {

 For all attributes {

 // generate from attributes routines

 }

 For all operations {

 // generate from operations routines

 }

}

For all associations {

 // generate from associations routines

}

Fig. 2 General description of the sentence planner

Campaign

estimatedCost
overallCost
completed

estimateCost
addCostEstimated
validate

(a)

Campaign

estimatedCost
overallCost
completed

estimateCost
addCostEstimated
validate

(b)

Campaign

estimatedCost
overallCost
completed

estimateCost
addCostEstimated
validate

(c)

Fig. 3 Generating sentences from class attributes

10 Requirements Eng (2008) 13:1–18

123

the words in the operation. In Fig. 4c the following sen-

tence is generated ‘‘add income to estimated balance’’. This

rule is used with the remaining operations such as those

having the structure VPVN.

4.3.3 Generating from relationships

There are three fundamental types of relationships in OO:

Associations, Aggregations and Generalizations. An asso-

ciation is a functional relationship between two or more

objects such as ‘‘Professor teaches a module’’. An aggrega-

tion, also known as ‘‘part-of’’ or ‘‘part/whole’’ relationships,

are used to denote that one object is ‘‘part/whole’’ of another

object for example to represent a relationship between a

lecture and a module. A generalisation, also know as ‘‘kind-

of’’ relationships, denote that one object is a special case of

another for example a lecturer is a kind of an academic, the

others can be a professor or an associate professor. Gener-

ating sentences from associations is based on the template

shown in Fig. 5.

For example, if object1 = ‘‘Author’’, object2 = ‘‘Book’’

and the association name = ‘‘writes’’ and the cardinality of

the association is ‘‘1, 1,...,*’’ then the following sentence is

generated ‘‘The author writes one or many books’’.

Sentences generated from aggregations take the form

‘‘whole is composed of parts’’. Using the example given in

Fig. 6a, the sentence ‘‘A module is composed of lectures’’

is generated. Sentences generated from generalisation take

the form ‘‘specific object is a general object’’. Again using

the example given in Fig. 6b, the sentence ‘‘a Lecturer is an

academic staff’’ is generated. In our developed system, we

use the capabilities of WordNet [27] to check that the

sentences generated from all relationships are semantically

correct. This is explained in details in Sect. 4.6.

4.4 The realizer

Sentences generated from the sentence planner are fed to the

realizer responsible for ensuring agreement between words

and aggregations. From the analysis on the syntactic varia-

tion of the strings used to name the various components of a

class diagram as described in Sect. 3, agreement should

handle cardinality to noun phrase agreement and noun

phrase to verb agreement. Verbs are either in present tense or

in past participle and this significantly reduces the amount of

morphological rules needed. Aggregation includes subject

grouping where ‘‘has sentences’’ (Sect. 4.3.1.1) are com-

bined together and joint grouping of verb phrases referring to

the same entities. The morphological processor and the

aggregator are described in the following subsections.

4.4.1 Morphological processor

The morphological processor is responsible for cardinality

to noun phrase agreement and for noun phrase to verb

agreement. Cardinality to noun phrase agreement requires

that the sentence planner has set the ‘‘+sg’’ or ‘‘+pl’’

indicators as described in Sect. 3.2 based upon, which the

morphological processor applies changes whenever nec-

essary. If the indicator is set to the ‘‘sg’’ there is no further

processing since WordNet [27] returns the singular form of

the noun. Applying plurality to a noun phrase requires us to

locate the main noun within the noun phrase and then call

the morphological processor. The main noun within a noun

phrase is always the rightmost noun. For example in

‘‘starting date’’ the word ‘‘date’’ is the main noun. For

Campaign

estimatedCost
overallCost
completed

estimateCost
addCostEstimated
validate

(a)

Campaign

estimatedCost
overallCost
completed

estimateCost
addCostEstimated
validate

(b)

Income

addToEstimatedBalance

(c)

Fig. 4 Planning sentences from class operations

Fig. 5 Template used for

generating sentences from

relationships

Lecture

Module

1

*

Academic Staff

Lecturer

(a) (b)

Fig. 6 Generating sentences from aggregations and generalisations

Requirements Eng (2008) 13:1–18 11

123

cardinality to verb agreement the same procedure is fol-

lowed where the main verb is located and then a set of hard

coded rules are applied to the main verb. The verb phrase is

either a verb in present tense or in passive voice. If the verb

is in present tense the ‘‘es’’ or ‘‘s’’ is added to the mor-

pheme returned by WordNet. If the verb is in the passive

voice form the verb ‘be’ changes to either ‘‘is’’ or ‘‘are’’.

The rules of the morphological processor are hard coded

within the application.

4.4.2 The Aggregator

The Aggregator receives the sentences from the morpho-

logical processor and performs joint grouping of ‘‘has

sentences’’ and joint grouping of verb phrases that refer to

the same entity. More specifically the sentence planner

has already integrated sentences generated within the

same object so that joint grouping is performed only to

sentences referring to the same object name. An example

of joint grouping of ‘‘has sentences’’ is the formation of

‘‘car has wheels and windows’’ from ‘‘car has wheels’’

and ‘‘car has windows’’. An example of combining verb

phrases referring to the same entities is the formation of

‘‘estimate and calculate cost’’ from ‘‘calculate cost’’ and

‘‘estimate cost’’. Figure 7 shows the pseudo code for the

aggregator.

4.5 The document structurer

The final step before the sentences are displayed, struc-

tures the generated sentences into an output in a more

readable format. Sentences are processed with associations

first generated and sentences referring to the same enti-

ties generated immediately after. In that way, sentences

referring to the same entities are generated at the same

time, so there is a flow in the generated text. The pseudo-

code given in Fig. 8 summarises the routine we have

implemented.

4.6 Semantics analyser

The semantics component is responsible for verifying that

the generated sentences are semantically correct and dis-

playing related entities to all main nouns of object names in

the UML class diagram. Associations are divided into

simple associations, aggregations and compositions (where

a noun phrase owns another noun phrase), and general-

izations (where a noun phrase is of type noun phrase).

WordNet’s functionality enables the user to display all

hypernyms (kind of) for a given noun. For example if the

user asks for the hypernyms of noun ‘‘professor’’ a list of

hypernyms is returned as shown in Fig. 9. This feature can

be used when verifying generalizations where a noun

phrase (object name) is assumed to be ‘a kind of’ a noun

phrase (another object name). In these cases, we tokenize

the main noun of the noun phrase and get all hypernyms by

accessing WordNet’s database. The list of hypernyms is

compared to the candidate ‘kind of’ noun and if it returns

true the generalization is valid. A similar approach is fol-

lowed in aggregation and composition where a list of

meronyms (part of) of a word are returned from WordNet

and compared to the target noun. Related terms are also

displayed to the user. This mechanism tokenizes all object

names (noun phrases) and proceeds by determining the

main noun for each noun phrase. The system then uses as

an index the main noun and displays the meronyms.

Sentences generated from attributes and operations are

always composed of a verb. The verification of these sen-

tences includes the checking for the validity of certain noun

phrases to follow or precede a specific verb. In WordNet it

is possible to get a set of frames showing the type of words

allowed to precede and/or follow a verb. Figure 10 shows

the sentence frames for the verb ‘‘estimate’’. Given that the

For i to sentence size {

 For j=i+1 to sentence size {

 If (sentences have ‘has’ as a verb) {

 Compare nouns // subjects

 Combine sentences

 }

 }

}

For i to sentence size {

 For j=i+1 to sentence size {

 If (sentences refer to the same entity) {

 Combine sentences

 }

 }

}

Fig. 7 The pseudo code for the aggregator

For all sentences to display {

For all sentences from associations {

Display sentence from association

If association’s object name equals a noun in a S NP
 <has> NP sentence
{
Display sentence

}

}

}

Display the rest of sentences

Fig. 8 Document structurer pseudocode

12 Requirements Eng (2008) 13:1–18

123

sentences generated by our system are mostly of the form

S ? NP, V, NP, the verification of these sentences could

be done by getting the corresponding sentence frames of

the verb and then by checking whether the noun phrase is

of the target type specified by WordNet’s sentence frame.

For example ‘‘Door estimates budget’’ is invalid since

‘‘door’’ is of type something and none of the frames for

verb ‘‘estimate’’ expect a noun phrase of type something to

precede the verb. Also ‘‘manager estimates cost’’ is valid

since manager is of type ‘‘somebody’’ and cost is of type

‘‘something’’. To proceed into the validation step of the

sentences we should categorize noun phrase into three

types. Somebody (manager, professor), something (knife,

window) and social group (university, organization) with

social group being a collection of somebody. To determine

the type of a given noun phrase we extract the main noun

and then get the corresponding meronyms. Then we iterate

through the sentence frames, and validate whether any of

the senses of the noun is of the type specified in the sen-

tence frame. If all noun phrases in a sentence return true for

a given sentence frame it means that the sentence itself is

valid. Else if none of the sentence frames for all noun

phrases return true, then the semantics component outputs a

message with the invalid sentence as well as the set of the

valid sentence frames for the sentence’s verb.

Although it seems reasonable to employ a similar

technique for verifying ‘has sentences’, it turns out that

relationships between attributes and object names are very

general. In UML attributes are assumed to be ‘‘part of’’ an

object, in the sense that it indicates that the attribute resides

within the object’s definition and not necessarily that the

attribute is a part of the entity ‘‘object’’. Consider Fig. 11,

where the class Professor has attributes instructors and

name. This relationship indicates that ‘‘instructors’’ is an

attribute of professor and not part of it. Thus the relation-

ship between these two entities is general and can not be

verified from the meronyms definitions of ‘‘professor’’. In

addition for verbs get, set, change, update and insert we

perform no semantic verification because these actions

imply manipulation of data within an object rather than

manipulation of sub entities within entities. For instance, in

Fig. 11 we could have get instructors (get somebody), get

name (get something), implying that there is a routine to

get the contents of attributes within an object.

Fig. 9 Hypernyms of the word

‘‘professor’’

Fig. 10 Sentence frames for the

verb ‘‘estimate’’

Requirements Eng (2008) 13:1–18 13

123

5 System evaluation

5.1 The case study

To illustrate how our system works and the kind of NL

requirements it generates, we have used a case study taken

from [3] and which class diagram is shown in Fig. 12. It

represents a class diagram for a University system and

involves standard functionalities such as a professor giving

a seminar, a student attending a course, etc. The case study

was chosen by one of the authors and contains the kind of

information and complexity our system can deal with at

this development stage. In [3], the case study was described

through a set of use cases from which the class diagram

was derived. Hence it was not possible to compare the

generated NL specifications with the original ones but

comparison can be made with the description of the use

case diagrams. The objective of this evaluation is twofold:

(1) To verify the strings naming used in the class diagram

and compare them with the results obtained from our study

as described in Sect. 3 and (2) to have an idea on the kind

of NL specifications generated by our system.

5.2 String naming compliance

In this case study, class and relationship names are 100%

compatible with the rules defined in Sect. 3. 94.5% of the

attributes are compatible and only 5.5% are not. However,

these were successfully tagged. 89.8% of the operations

names are compatible with the rules. 10.8% of the opera-

tions (4) were found to be of the form VNA, which was not

identified earlier. If we have used a larger sample to derive

the rules in Sect. 3, this might have identified this type of

strings earlier. Table 6 summarises the names distribution

for the case study.

5.3 Evaluation of tagging results

The tagging of the attributes, operations and relationships

between the classes are based on the rules defined in

Sect. 3. The tagged strings are those obtained from the

internal representation of the class diagram. 92.8% of the

strings are compatible with the rules defined in this study

for naming the components of a class diagram. 35.7% of

the strings are ambiguous and our system has assigned the

correct PoS for 84% of these ambiguous strings. This high

accuracy is explained by the high compatibility rates, since

the tagger is designed to efficiently tag strings that comply

with the assumed rules. 16% the ambiguous strings were

not resolved as they were of the form VNA, which was not

included in our initial list of rules, with the adjective being

+getName()
+setName()
+getInstructors()
+setInstructors()

-Name
-Instructors

ProfessorFig. 11 Class professor

Fig. 12 The UML class

diagram for the case study

14 Requirements Eng (2008) 13:1–18

123

interpreted as a verb in the past tense. This rule has now

been added to our list of rules.

5.4 Evaluation of the generator

We were able to generate sentences describing most of the

information from the case study class diagram. In fact, the

structure of the lexical base proved complete for verifying

the meaning and generating NL from operations and

attributes. Since most operations are composed of a single

verb, the decision to perform a verb-based search to match

an entry in the lexical base was sufficient. For attributes,

we verified all relationships between all nouns in a given

object, and generated sentences such as ‘‘professor has

date’’. For associations we were able to generate sentences,

by verifying that a ‘‘noun’’ may perform action ‘‘verb’’ and

this action ‘‘verb’’ may be performed to another ‘‘noun’’.

We also applied transformations to verbs into third person

in singular, where necessary and combined already gen-

erated sentences. The sentence ‘‘get full name’’ is a result

of combining the frame ‘‘get name’’ with the adjective-

noun entry ‘‘full name’’. However, we were unable to

generate the correct information from incorrectly resolved

strings. ‘‘addSeminarOverseen’’ generates ‘‘add seminar’’

instead of ‘‘add Overseen Seminar’’. ‘‘Overseen’’ was

tagged as a verb, thus the system does not check for veri-

fication of the ‘‘overseen-seminar’’ pair having as a result

the omission of the word ‘‘overseen’’ from the generated

sentence. A rule is added for future versions of the system.

Figure 13 shows part of the NL specifications generated by

the GeNLangUML system for the case study.

5.5 Conclusions and lessons learnt

The evaluation of the proposed system has shown both

the strengths and weaknesses of our system. In terms of

naming the classes, their attributes and operations and

the relationships, the results obtained are consistent with

those of our study. At least, within the academic com-

munity, there seems to be some kind of consensus on

how to name the various components of a class diagram.

Although, the generated NL should be understandable by

most users, it still remains at the same level of

abstraction as the class diagram. Hence, some users may

require some basic understanding of OO concepts to

make sense of the generated NL specifications. For those

who can understand OO concepts, the generated NL

specifications are similar to the language used in the

Table 6 Case study naming distribution

Rules Classes Relations Attributes Operations

N AN NNN VP V N NN NA oth VN VNN V oth

7 1 1 3 2 11 6 1 1 22 10 1 4

% 77.8 11.1 11.1 60 40 61.1 33.3 5.5 5.5 59.4 27 2.7 10.8

Fig. 13 A sample of the

generated Natural Language

specifications

Requirements Eng (2008) 13:1–18 15

123

description of the use cases used for the development of

the class diagram in [3].

6 Conclusion and future developments

In this paper, we presented the GeNLangUML system that

generates NL specifications from UML class diagrams. We

studied 45 class diagrams, all academic and taken from text

books, to understand the most commonly used rules and

conventions used by software developers when naming

various components of a class diagram. A set of rules based

on the syntactic structures of the string names has been

developed taking into account statistical information.

These rules were used to understand and disambiguate the

names given to classes, relationships, attributes and oper-

ations in a UML class diagram. We used WordNet for the

syntactic analysis of the input names and the verification of

sentences generated. The system was evaluated using an

independent case study. The results obtained so far are

encouraging and the implemented prototype demonstrated

its feasibility. If fully implemented, such a system will

undeniably help software engineers in generating NL

specifications from class and other UML diagrams to use

for communicating with those stakeholders who cannot

understand UML models. These can also be used as a way

of integrating users in the consistency checking process

when changes are made to the design or implementation.

As mentioned earlier, tools such as Rational Rose (http://

www-306.ibm.com/software/rational) can reverse engineer

code to UML diagrams and systems such as GeNLan-

gUML will help the generation of NL specifications from

UML diagrams.

However, in its current state, our system presents few

weaknesses and further developments should address the

following issues.

1. This research is purely developed in an academic

environment. The examples used to statistically sam-

ple the naming conventions in UML class diagrams are

taken from academic books as is the final example

used to evaluate the system. In industry, this might be

completely different as various organizations may

have different conventions in naming the class dia-

grams components. For example they may use

abbreviations such as ‘‘DoB’’ instead of ‘‘DataOf-

Birth’’, the linking of a class name to a module or

subsystem as in ‘‘PM-CustomerName’’ to show that

the customer name is related to the purchase module

(PM) or the linking of an attribute to its class name.

However, when developing software projects a data

dictionaries are often used and these would contain

entries to the class and attributes names in particular.

Hence, future developments of the system should take

into account data dictionaries and use them to com-

plement the information already available in the class

diagrams.

2. The NL generated remains at a level of abstraction

similar to that of the original class diagram. Hence,

some users may still need to understand some OO

concepts to make sense of the generated specifications.

At this stage, our system can be used as a tool for

teaching requirements engineering and OO modelling.

This will help students to have different views of the

same model. Further development of the system should

improve the generated requirements by solving more

ambiguous string and improve their final structure to

make them more readable and close to the way NL

requirements are written.

3. Class diagrams are not the only models developed

during software specification and design, use cases,

interaction diagrams and state diagrams should also be

looked at as they may enrich the generated NL

requirements.

4. The work on translating OCL to NL reported in the

literature review section can be used to complement

our work.

Acknowledgments The authors would like to thank the anonymous

referees for their helpful comments, suggestions and insightful

questions that helped improve the content and structure of this paper.

References

1. Abbott A (1983) Program design by informal English description.

CACM 16(11):882–894

2. Ambler SW (2001) The object primer, the application devel-

oper’s guide to object orientation and the UML. Cambridge

University Press, Cambridge

3. Ambler SW (2004) The object primer, Agile—model driven

application development with UML 2.0, 3rd edn. Cambridge

University Press, Cambridge

4. Ahrendt W, Baar T, Beckert B, Bubel R, Giese M, Hähnle R,

Menzel W, Mostowski W, Roth A, Schlager S, Schmitt PH

(2005) The KeY tool. Softw Syst Model 4(1):32–54

5. Ambriola V, Gervasi V (2003) The CIRCE approach to the

systematic analysis of natural language requirements, Technical

Report TR03 -05, University of Pisa, Dipartimento di Informat-

ica, March 2003, http://citeseer.ist.psu.edu/ambriola03circe.html

6. Athanasakis N (2006) Generating natural language from UML

class diagrams. Master Thesis, University of Salford, School of

Computing, Science and Engineering, UK

7. Barclay KA, Savage J (2003) Object-oriented design with UML

and JAVA, Butterworth-Heinemann Ltd

8. Bennet S, Mcrobb S, Fenter R (2002) Object oriented systems

analysis and design using UML, 3rd edn. Mc Graw Hill,

9. Booch G (1986) Object Oriented development. IEEE Trans Softw

Eng 12(2):211–221

10. Booch G, Rumbaugh J, Jacobson I (1999) The Unified modeling

language user guide, Addison-Wesley, Reading

16 Requirements Eng (2008) 13:1–18

123

http://www-306.ibm.com/software/rational
http://www-306.ibm.com/software/rational
http://citeseer.ist.psu.edu/ambriola03circe.html

11. Booch G (2003) Object oriented analysis and design with appli-

cations, Addison-Wesley, Reading

12. Brill E (1995) Transformation-based error-driven learning and

natural language processing: a case study in part-of-speech tag-

ging. Comput Linguist 21(4):543–565

13. Bruegge B, Dutoit AH (2003) Object-oriented software engi-

neering: using Uml, patterns and Java: International Edition,

Prentice-Hall, Englewood Cliffs

14. Burke DA (2004) Improving the natural language translation of

formal software specifications, Master Thesis, Chalmers

University of Technology, Gothenburg, Sweden

15. Burke D, Johannisson K (2005) Translating formal software

specifications to natural language: a grammar-based approach. In:

Proceedings of the logical aspects of computational linguistics

conference, Bordeaux, France, April 2005, pp 51–66

16. Caldwell DE, Korelsky T (1994) Bilingual generation of job

descriptions from quasi-conceptual forms. In: Proceedings of the

4th ACL conference on applied natural language processing,

Stuttgart, pp 1–6

17. Caragno D, Iordanskaja L (1989) Content determination and text

structuring in Gossip. In: Extended abstracts of the 2nd European

natural language generation workshop, University of Edinburgh,

pp 15–21

18. Chen PPS (1976) The entity-relationship model : toward a unified

view of data. ACM Trans Database Syst 1(3):9–36

19. Chen PPS (1983) English sentence structure and entity-relation-

ship diagrams. Inf Syst 29:127–149

20. Cheng BHC, Campbell LA (2001) Integrating informal and for-

mal approaches to requirements modeling and analysis, In:

Proceedings of the 5th international symposium on requirements

engineering, Toronto, Canada, pp 294–295

21. Christel MG, Kang KC (1992) Issues in requirements elicitation,

Technical Report CMU/SE1–92-TR-12 ESC-TR-92–012, Soft-

ware Engineering Institute, Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

22. Dalianis H, Hovy E (1993) Aggregation in natural language

generation. In: Lecture notes in computer science, vol 1036,

Springer, Heidelberg, pp 88–105

23. Danlos L, Lapalme G, Lux V (2000) Generating a Controlled

Language. In: Proceedings of the first international conference on

Natural language generation, vol 14. Mitzpe Ramon, Israel, pp

141–147

24. Davis AM (1990) Software requirements analysis and specifica-

tion, Prentice-Hall, Englewood Cliffs

25. Dunn L, Orlowska M (1990) A natural language interpreter for

construction of conceptual schemas. In: Proceedings of the 2nd

Nordic conference on advanced information systems engineering,

Springer, Heidelberg, pp 371–386

26. Eugenio DB, Glass M, Trolio M (2002) The DIAG Experiments:

NLG for intelligent tutoring systems. In: Proceedings of the

AAAI spring symposium on natural language generation in

spoken and written dialogue, pp 120–127

27. Fellbaum C (ed) (1998) WordNet: an electronic lexical database,

MIT Press, Cambridge. http://wordnet.princeton.edu/

28. Fickas S (1987) Automating the analysis process. In: Proceedings

of 4th IEEE international workshop on software specification and

design, Monterey, pp 58–67

29. Gervasi AV, Zowghi AD (2005) Reasoning about inconsistencies

in natural language requirements. ACM Trans Softw Eng Meth-

odol 14(3):277–330

30. Goldberg E, Driedger N, Kitteridge R (1994) Using natural lan-

guage processing to produce weather forecasts. IEEE Expert

9(2):45–53

31. Goldin L, Berry DM (1997) AbstFinder, A prototype natural

language text abstraction finder for use in requirements elicita-

tion. Autom Softw Eng 4(4):375–412

32. Harmain HM (2000) Building Object-Oriented conceptual

models using natural language processing techniques, PhD

Thesis, Department of Computer Science, University of Shef-

field, UK

33. Harmain HM, Gaizauskas R (2003) CM-Builder: A natural lan-

guage-based CASE tool for object-oriented analysis. Autom

Softw Eng J 10(2):157–181

34. Heitmeyer CL, Jeffords RD, Labaw BC (1996) Automated con-

sistency checking of requirements specifications. ACM Trans

Softw Eng Methodol 5(3):231–261

35. Horacek H (1992) An integrated view of text planning. In:

Aspects of automated natural language generation, Lecture notes

in artificial intelligence, vol 587. Springer, Berlin, pp 29–44

36. Johannisson K (2005) Formal and Informal Software Specifica-

tions. PhD Thesis, Department of Computing Science, Götenborg

University

37. Jones CB (1990) Systematic software development using VDM,

Prentice-Hall, Englewood Cliffs

38. Kof L (2006) Text analysis for requirements engineering, PhD

Thesis, Institut für Informatik der Technischen Universität

München, Germany

39. Konrad S, Cheng BHC (2005) Automated analysis of natural

language properties for UML models. MoDELS Satellite Events,

pp 48–57

40. Lavoie B, Rambow O, Reiter E (1996) The ModelExplainer. In:

Proceedings of the 8th international workshop on natural lan-

guage generation, England, pp 9–12

41. Lethbridge T, Singer J, Forward A (2003) How software engi-

neers use documentation: the state of the practice, IEEE

Software, pp 35–39

42. Lethbridge T, Laganiere R (2004) Object-oriented software

engineering: practical software development using UML and

Java, McGraw-Hill, New York

43. Lubars MD, Harandi MT (1986) Intelligent support for software

specification and design. IEEE Expert 1(4):33–41

44. Maciaszek LA (2001) Requirements analysis and system design,

developing information systems with UML, Addison-Wesley,

Reading

45. Mann WC, Moore JA (1980) Computer as author—results and

prospects, Technical Report RR-79–82. USC Information Sci-

ence Institute, Marina del Rey

46. Martin-Löf P (1984) Intuitionistic type theory. Bibliopolis,

Napoli

47. Kajko-Mattsson M (2001) The state of documentation practice

within corrective maintenance. In: Proceedings of the IEEE

international conference on software maintenance, ICSM, pp

354–363

48. Mckeown K, Kukich K, Shaw J (1994) Practical issues in auto-

matic documentation generation. In: Proceedings of the 4th

conference on applied natural language processing, Stuttgart, pp

7–14

49. Meziane F (1994) From English to formal specifications, PhD

Thesis, University of Salford

50. Mich L (1996) NL-OOPS: from natural language to object ori-

ented requirements using the natural language processing system

LOLITA. Nat Lang Eng 2(2):161–187

51. Moore J, Paris C (1989) Planning text for advisory dialogues. In:

Proceedings of the 27th annual meeting of the association for

computational linguistics, pp 203–211

52. Moreno AC, Juristo N, Van RP de Riet (2002) Formal justifica-

tion in object-oriented modelling: a linguistic approach. Data

Knowledge Eng 33(2):25–47

53. Nuseibeh B, Easterbrook S (2000) Requirements engineering: a

roadmap, In: Proceedings of the international conference on the

future of software engineering, Limerick, Ireland, ACM Press,

New york, pp 35–46

Requirements Eng (2008) 13:1–18 17

123

http://wordnet.princeton.edu/

54. Nyberg EH, Mitamura T (1996) Controlled language and

knowledge-based machine translation: principles and practice. In:

Proceedings of the first international workshop on controlled

language applications

55. OMG, Unified Modeling Language Specification, version 1.5 (http://

www.uml.org)

56. Overmeyer SP, Lovoie B, Rambow O (2001) Conceptual mod-

eling through linguistic analysis using LIDA. In: Proceedings of

the 23rd international conference on software engineering,

Toronto, Canada, pp 401–410

57. Paiva DS (1998) A survey of applied natural language generation

systems, Information Technology Research Institute Technical

report Series, University of Brighton

58. Presland G (1996) The analysis of natural language requirements

documents, PhD thesis, University of Liverpool

59. Reiter E, Mellish C, Levine J (1992) Automatic generation of on-

line documentation in the IDAS project. In: Proceedings of the

3rd conference on applied natural language processing, pp 64–71

60. Reiter E (1995) NLG vs. Templates. In: Proceedings of the 5th

European workshop on natural language generation, Leiden, The

Netherlands, pp 95–105

61. Richard K, Mel’cuk I (1983) Towards a computable model of

meaning text relations within a natural sublanguage. In:

Proceedings of the 8th international joint conference on artificial

intelligence (IJCAI-83), Karlsruhe, West Germany, pp 657–659

62. Saeki M, Horai H, Toyama K, Uematsu N, Enomoto H (1987)

framework based on natural language, In: Proceedings of the 4th

IEEE international workshop on software specification and

design, Monterey, pp 87–94

63. Schwitter R (2002) English as a formal specification language,

Proceedings of the 13th international workshop on database and

expert systems applications, IEEE Computer Society, Washing-

ton, DC, USA, pp. 228–232

64. Shaw J (1995) Conciseness through aggregation in text genera-

tion. In: Proceedings of the 33rd ACL, pp 329–331

65. Spivey M (1992) The Z notation: a reference manual, 2nd edn.

Prentice-Hall International

66. Wahlster W, Andre E, Bandyopadhyay S, Winfried G, Rist T

(1991) WIP: the coordinated generation of multimodal presen-

tations from a common representation. In: Stock O, Slack J,

Ortony A (eds) Computational theories of communication and

their applications. Springer, Heidelberg, pp 75–93

67. Walden K (1996) Reversibility in software engineering. Com-

puter 29(9):93–95

68. Warmer JS, Kleep AG (1998) The object constraint language:

precise modeling with UML, Addison-Wesley, Reading

18 Requirements Eng (2008) 13:1–18

123

http://www.uml.org
http://www.uml.org

	Generating Natural Language specifications from UML class diagrams
	Abstract
	Introduction and motivation
	Introduction
	Motivation
	Research scope and limitations

	Related work
	Natural Language Generation (NLG) systems
	Modelling from Natural Language specifications
	Generating Natural Language from software specifications

	Understanding and interpreting UML class diagrams
	UML class naming conventions and tagging
	UML relationships naming conventions �and tagging
	UML class attributes naming conventions �and tagging
	UML class operations naming conventions �and tagging

	Generating Natural Language specifications
	The UML class diagram interface
	Pre-processing and tagging
	The sentence planner
	Generating from attributes
	Formation of ‘‘has” sentences (‘‘object name” has ‘‘attribute”)
	Formation from verbs at first position (‘‘verb” ‘‘right Noun Phrase” or ‘‘object name”)
	Generating from verbs elsewhere (‘‘verb” ‘‘right Noun Phrase” or ‘‘left Noun Phrase”)

	Generating from operations
	Generating a sentence from a verb in the first position (verb object name)
	Generating from verb elsewhere (‘‘verb” ‘‘right Noun Phrase” or ‘‘left Noun Phrase”)
	Planning from all words in operations

	Generating from relationships

	The realizer
	Morphological processor
	The Aggregator

	The document structurer
	Semantics analyser

	System evaluation
	The case study
	String naming compliance
	Evaluation of tagging results
	Evaluation of the generator
	Conclusions and lessons learnt

	Conclusion and future developments
	Acknowledgments
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002d00730062006d002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

